Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal

Authors: T. Remen, J. Pintos, M. Abrahamowicz, J. Siemiatycki

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Few epidemiologic findings are as well established as the association between smoking and lung cancer. It is therefore somewhat surprising that there is not yet a clear consensus about the exposure-response relationships between various metrics of smoking and lung cancer risk. In part this is due to heterogeneity of how exposure-response results have been presented and the relative paucity of published results using any particular metric of exposure. The purposes of this study are: to provide new data on smoking-lung cancer associations and to explore the relative impact of different dimensions of smoking history on lung cancer risk.

Methods

Based on a large lung cancer case-control study (1203 cases and 1513 controls) conducted in Montreal in 1996–2000, we estimated the lifetime prevalence of smoking and odds ratios in relation to several smoking metrics, both categorical and continuous based on multivariable unconditional logistic regression.

Results

Odds ratios (ORs) for ever vs never smoking were 7.82 among males and 11.76 among females. ORs increased sharply with every metric of smoking examined, more so for duration than for daily intensity. In models using continuous smoking variables, all metrics had strong effects on OR and mutual adjustment among smoking metrics did not noticeably attenuate the OR estimates, indicating that each metric carries some independent risk-related information. Among all the models tested, the one based on a smoking index that integrates several smoking dimensions, provided the best fitting model. Similar patterns were observed for the different histologic types of lung cancer.

Conclusions

This study provides many estimates of exposure-response relationships between smoking and lung cancer; these can be used in future meta-analyses. Irrespective of the histologic type of lung cancer and the smoking metric examined, high levels of smoking led to high levels of risk, for both men and women.
Appendix
Available only for authorised users
Literature
1.
go back to reference U.S. Department of Health Education and Welfare. Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control; 1964. PHS Publication No. 1103’ U.S. Department of Health Education and Welfare. Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington: U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control; 1964. PHS Publication No. 1103’
4.
go back to reference Iarc Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum. 2004;83:1–1438.PubMedCentral Iarc Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum. 2004;83:1–1438.PubMedCentral
7.
go back to reference Leffondre K, Abrahamowicz M, Siemiatycki J, Rachet B. Modeling smoking history: a comparison of different approaches. Am J Epidemiol. 2002;156(9):813–23.CrossRef Leffondre K, Abrahamowicz M, Siemiatycki J, Rachet B. Modeling smoking history: a comparison of different approaches. Am J Epidemiol. 2002;156(9):813–23.CrossRef
11.
go back to reference World Health Organization/International Agency for Research on Cancer. Histological groups for comparative studies. Lyon: International Agency for Research on Cancer; 1998. World Health Organization/International Agency for Research on Cancer. Histological groups for comparative studies. Lyon: International Agency for Research on Cancer; 1998.
13.
go back to reference Hoffmann K, Bergmann MM. Re: “Modeling smoking history: a comparison of different approaches”. Am J Epidemiol. 2003;158(4):393 author reply −4.CrossRef Hoffmann K, Bergmann MM. Re: “Modeling smoking history: a comparison of different approaches”. Am J Epidemiol. 2003;158(4):393 author reply −4.CrossRef
15.
go back to reference Siemiatycki J, Wacholder S, Richardson L, Dewar R, Gerin M. Discovering carcinogens in the occupational environment. Methods of data collection and analysis of a large case-referent monitoring system. Scand J Work Environ Health. 1987;13(6):486–92.CrossRef Siemiatycki J, Wacholder S, Richardson L, Dewar R, Gerin M. Discovering carcinogens in the occupational environment. Methods of data collection and analysis of a large case-referent monitoring system. Scand J Work Environ Health. 1987;13(6):486–92.CrossRef
16.
go back to reference Siemiatycki J. Risk factors for cancer in the workplace. FL: Boca Raton: CRC Press; 1991. Siemiatycki J. Risk factors for cancer in the workplace. FL: Boca Raton: CRC Press; 1991.
17.
go back to reference Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–74.CrossRef Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–74.CrossRef
18.
go back to reference Benichou J. Methods of adjustment for estimating the attributable risk in case-control studies: a review. Stat Med. 1991;10(11):1753–73.CrossRef Benichou J. Methods of adjustment for estimating the attributable risk in case-control studies: a review. Stat Med. 1991;10(11):1753–73.CrossRef
20.
go back to reference Siemiatycki J, Krewski D, Franco E, Kaiserman M. Associations between cigarette smoking and each of 21 types of cancer: a multi-site case-control study. Int J Epidemiol. 1995;24(3):504–14.CrossRef Siemiatycki J, Krewski D, Franco E, Kaiserman M. Associations between cigarette smoking and each of 21 types of cancer: a multi-site case-control study. Int J Epidemiol. 1995;24(3):504–14.CrossRef
21.
go back to reference Burns DM, Lee L, Shen LZ, Gilpin E, Tolley HD, Vaughn J, et al. Cigarette smoking behavior in the United States. In: Shopland R, Burns DM, Garfinkel L, Samet JM, editors. Changes in Cigarette Related Disease Risks and Their Implication for Prevention and Control. Smoking and Tobacco Control Monograph 8. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute: NIH Publication; 1997. p. 13–42. Burns DM, Lee L, Shen LZ, Gilpin E, Tolley HD, Vaughn J, et al. Cigarette smoking behavior in the United States. In: Shopland R, Burns DM, Garfinkel L, Samet JM, editors. Changes in Cigarette Related Disease Risks and Their Implication for Prevention and Control. Smoking and Tobacco Control Monograph 8. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute: NIH Publication; 1997. p. 13–42.
23.
go back to reference Khuder SA. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer. 2001;31(2–3):139–48.CrossRef Khuder SA. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer. 2001;31(2–3):139–48.CrossRef
27.
go back to reference Shiffman S. How many cigarettes did you smoke? Assessing cigarette consumption by global report, time-line follow-Back, and ecological momentary assessment. Health psychology : official journal of the Division of Health Psychology, American Psychological Association. 2009;28(5):519–26. https://doi.org/10.1037/a0015197.CrossRef Shiffman S. How many cigarettes did you smoke? Assessing cigarette consumption by global report, time-line follow-Back, and ecological momentary assessment. Health psychology : official journal of the Division of Health Psychology, American Psychological Association. 2009;28(5):519–26. https://​doi.​org/​10.​1037/​a0015197.CrossRef
28.
go back to reference Iarc Working Group on the Evaluation of Carcinogenic Risks to Humans. Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt E):1–538.PubMedCentral Iarc Working Group on the Evaluation of Carcinogenic Risks to Humans. Personal habits and indoor combustions. Volume 100 E. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt E):1–538.PubMedCentral
30.
go back to reference Vlaanderen J, Portengen L, Schuz J, Olsson A, Pesch B, Kendzia B, et al. Effect modification of the association of cumulative exposure and cancer risk by intensity of exposure and time since exposure cessation: a flexible method applied to cigarette smoking and lung cancer in the SYNERGY study. Am J Epidemiol. 2014;179(3):290–8. https://doi.org/10.1093/aje/kwt273.CrossRefPubMed Vlaanderen J, Portengen L, Schuz J, Olsson A, Pesch B, Kendzia B, et al. Effect modification of the association of cumulative exposure and cancer risk by intensity of exposure and time since exposure cessation: a flexible method applied to cigarette smoking and lung cancer in the SYNERGY study. Am J Epidemiol. 2014;179(3):290–8. https://​doi.​org/​10.​1093/​aje/​kwt273.CrossRefPubMed
35.
go back to reference Chyou PH, Nomura AM, Stemmermann GN. A prospective study of the attributable risk of cancer due to cigarette smoking. Am J Public Health. 1992;82(1):37–40.CrossRef Chyou PH, Nomura AM, Stemmermann GN. A prospective study of the attributable risk of cancer due to cigarette smoking. Am J Public Health. 1992;82(1):37–40.CrossRef
36.
go back to reference Samet JM, Alberg AJ, Ford JG. Epidemiology of lung cancer and mesothelioma. In: Spiro SG, Huber RM, Janes SM, editors. European Respiratory Monograph 44: Thoracic Malignancies. European Respiratory Society; 2009. p. 349–91. Samet JM, Alberg AJ, Ford JG. Epidemiology of lung cancer and mesothelioma. In: Spiro SG, Huber RM, Janes SM, editors. European Respiratory Monograph 44: Thoracic Malignancies. European Respiratory Society; 2009. p. 349–91.
Metadata
Title
Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal
Authors
T. Remen
J. Pintos
M. Abrahamowicz
J. Siemiatycki
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5144-5

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine