Skip to main content
Top
Published in: Inflammation 3/2023

06-01-2023 | Rheumatoid Arthritis | ORIGINAL ARTICLE

Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling

Authors: Guofen Wang, Junsong Wang, Xian Li, Qiyang Wu, Ruifeng Yao, Xinjing Luo

Published in: Inflammation | Issue 3/2023

Login to get access

Abstract

Hypoxia and increased levels of inflammatory cytokines in the joints are characteristics of rheumatoid arthritis (RA). However, the effects of hypoxia and tumor necrosis factor-α (TNF-α) on interleukin (IL)-6 and IL-8 production on fibroblast-like synoviocytes (FLSs) remain to be clarified. This study aimed to explore how hypoxia and TNF-α affect the expression of IL-6 and IL-8 in human FLSs isolated from RA patients. Hypoxia or TNF-α treatment alone significantly increased the expression and promoter activity of IL-6, IL-8, and hypoxia-inducible factor-1α (HIF-1α). Treatment of hypoxic FLSs with TNF-α further significantly elevated the expression of these cytokines and enhanced promoter activity of HIF-1α, which was abrogated by treatment with the HIF-1α inhibitor YC-1. Similarly, TNF-α alone elevated the phosphorylation and promoter activity of nuclear factor-κBp65 (NF-κBp65) in the FLSs. These effects were further enhanced by the combined treatment of hypoxia and TNFα but were attenuated by the NF-κB inhibitor BAY11-7082. NF-κB-p65 inhibition decreased the effect of TNF-α on HIF-1α upregulation in the FLSs in response to hypoxia. The combination of hypoxia and TNF-α also significantly upregulated transforming growth factor-β-activated kinase 1 (TAK1) expression, and silencing TAK1 dramatically decreased NF-κB-p65, HIF-1α, IL-6, and IL-8 expression under the same conditions. Our results indicate that hypoxia and TNF-α synergistically increase IL-6 and IL-8 expression in human FLSs via enhancing TAK1/NF-κB/HIF-1α signaling.
Literature
1.
go back to reference Korb-Pap, A., J. Bertrand, J. Sherwood, and T. Pap. 2016. Stable activation of fibroblasts in rheumatic arthritis - causes and consequences. Rheumatology 55: 64–67.CrossRef Korb-Pap, A., J. Bertrand, J. Sherwood, and T. Pap. 2016. Stable activation of fibroblasts in rheumatic arthritis - causes and consequences. Rheumatology 55: 64–67.CrossRef
2.
go back to reference Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45: 669–675.PubMedCrossRef Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45: 669–675.PubMedCrossRef
3.
go back to reference Yokota, K., T. Miyazaki, M. Hirano, Y. Akiyama, and T. Mimura. 2006. Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Rheumatology 33: 463–471.PubMed Yokota, K., T. Miyazaki, M. Hirano, Y. Akiyama, and T. Mimura. 2006. Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Rheumatology 33: 463–471.PubMed
4.
go back to reference Luo, X.J., X.R. Mo, and L.L. Zhou. 2012. The effect of Hsp72 on IL-6, IL-8 expression and activation of NF-kappaB in synoviocytes of rheumatoid arthritis. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28: 336–339.PubMed Luo, X.J., X.R. Mo, and L.L. Zhou. 2012. The effect of Hsp72 on IL-6, IL-8 expression and activation of NF-kappaB in synoviocytes of rheumatoid arthritis. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28: 336–339.PubMed
5.
go back to reference Li, Y., and W. Zhang. 2017. IL-6: The next key target for rheumatoid arthritis after TNF-alpha. Sheng Wu Gong Cheng Xue Bao 33: 36–43.PubMed Li, Y., and W. Zhang. 2017. IL-6: The next key target for rheumatoid arthritis after TNF-alpha. Sheng Wu Gong Cheng Xue Bao 33: 36–43.PubMed
6.
go back to reference Quinonez-Flores, C.M., S.A. Gonzalez-Chavez, and C. Pacheco-Tena. 2016. Hypoxia and its implications in rheumatoid arthritis. Journal of Biomedical Science 23: 62.PubMedPubMedCentralCrossRef Quinonez-Flores, C.M., S.A. Gonzalez-Chavez, and C. Pacheco-Tena. 2016. Hypoxia and its implications in rheumatoid arthritis. Journal of Biomedical Science 23: 62.PubMedPubMedCentralCrossRef
7.
go back to reference Fearon, U., M. Canavan, M. Biniecka, and D.J. Veale. 2016. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nature Reviews Rheumatology 12: 385–397.PubMedCrossRef Fearon, U., M. Canavan, M. Biniecka, and D.J. Veale. 2016. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nature Reviews Rheumatology 12: 385–397.PubMedCrossRef
8.
go back to reference Muz, B., M.N. Khan, S. Kiriakidis, and E.M. Paleolog. 2009. Hypoxia The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research & Therapy 11: 201.CrossRef Muz, B., M.N. Khan, S. Kiriakidis, and E.M. Paleolog. 2009. Hypoxia The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research & Therapy 11: 201.CrossRef
9.
go back to reference Niu, X., Y. Chen, L. Qi, G. Liang, Y. Wang, L. Zhang, Y. Qu, and W. Wang. 2019. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1alpha pathway. Cytokine 113: 117–127.PubMedCrossRef Niu, X., Y. Chen, L. Qi, G. Liang, Y. Wang, L. Zhang, Y. Qu, and W. Wang. 2019. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1alpha pathway. Cytokine 113: 117–127.PubMedCrossRef
10.
go back to reference D’Ignazio, L., and S. Rocha. 2016. Hypoxia induced NF-kappaB. Cells 5: 10.PubMed D’Ignazio, L., and S. Rocha. 2016. Hypoxia induced NF-kappaB. Cells 5: 10.PubMed
11.
go back to reference Deng, W., X. Feng, X. Li, D. Wang, and L. Sun. 2016. Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology 303: 7–15.PubMedCrossRef Deng, W., X. Feng, X. Li, D. Wang, and L. Sun. 2016. Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology 303: 7–15.PubMedCrossRef
12.
go back to reference Guan, S.Y., R.X. Leng, J.H. Tao, X.P. Li, D.Q. Ye, N. Olsen, S.G. Zheng, and H.F. Pan. 2017. Hypoxia-inducible factor-1alpha: A promising therapeutic target for autoimmune diseases. Expert Opinion on Therapeutic Targets 21: 715–723.PubMedCrossRef Guan, S.Y., R.X. Leng, J.H. Tao, X.P. Li, D.Q. Ye, N. Olsen, S.G. Zheng, and H.F. Pan. 2017. Hypoxia-inducible factor-1alpha: A promising therapeutic target for autoimmune diseases. Expert Opinion on Therapeutic Targets 21: 715–723.PubMedCrossRef
13.
go back to reference Guo, X., and G. Chen. 2020. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Frontiers in Immunology 11: 1668.PubMedPubMedCentralCrossRef Guo, X., and G. Chen. 2020. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Frontiers in Immunology 11: 1668.PubMedPubMedCentralCrossRef
14.
go back to reference Ryu, J.H., C.S. Chae, J.S. Kwak, H. Oh, Y. Shin, Y.H. Huh, C.G. Lee, Y.W. Park, C.H. Chun, Y.M. Kim, S.H. Im, and J.S. Chun. 2014. Hypoxia-inducible factor-2alpha is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology 12: e1001881.PubMedPubMedCentralCrossRef Ryu, J.H., C.S. Chae, J.S. Kwak, H. Oh, Y. Shin, Y.H. Huh, C.G. Lee, Y.W. Park, C.H. Chun, Y.M. Kim, S.H. Im, and J.S. Chun. 2014. Hypoxia-inducible factor-2alpha is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology 12: e1001881.PubMedPubMedCentralCrossRef
15.
go back to reference Nonomura, Y., F. Mizoguchi, A. Suzuki, T. Nanki, H. Kato, N. Miyasaka, and H. Kohsaka. 2009. Hypoxia-induced abrogation of contact-dependent inhibition of rheumatoid arthritis synovial fibroblast proliferation. Journal of Rheumatology 36: 698–705.PubMedCrossRef Nonomura, Y., F. Mizoguchi, A. Suzuki, T. Nanki, H. Kato, N. Miyasaka, and H. Kohsaka. 2009. Hypoxia-induced abrogation of contact-dependent inhibition of rheumatoid arthritis synovial fibroblast proliferation. Journal of Rheumatology 36: 698–705.PubMedCrossRef
16.
go back to reference Sabi, E.M., A. Singh, Z.M. Althafar, T. Behl, A. Sehgal, S. Singh, N. Sharma, S. Bhatia, A. Al-Harrasi, H.M. Alqahtani, and S. Bungau. 2022. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 30: 737–748.PubMedCrossRef Sabi, E.M., A. Singh, Z.M. Althafar, T. Behl, A. Sehgal, S. Singh, N. Sharma, S. Bhatia, A. Al-Harrasi, H.M. Alqahtani, and S. Bungau. 2022. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 30: 737–748.PubMedCrossRef
17.
18.
go back to reference Thornton, R.D., P. Lane, R.C. Borghaei, E.A. Pease, J. Caro, and E. Mochan. 2000. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. The Biochemical Journal 350 (Pt 1): 307–312.PubMedPubMedCentralCrossRef Thornton, R.D., P. Lane, R.C. Borghaei, E.A. Pease, J. Caro, and E. Mochan. 2000. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. The Biochemical Journal 350 (Pt 1): 307–312.PubMedPubMedCentralCrossRef
19.
go back to reference Hellwig-Burgel, T., K. Rutkowski, E. Metzen, J. Fandrey, and W. Jelkmann. 1999. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567.PubMedCrossRef Hellwig-Burgel, T., K. Rutkowski, E. Metzen, J. Fandrey, and W. Jelkmann. 1999. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567.PubMedCrossRef
20.
go back to reference Westra, J., E. Brouwer, R. Bos, M.D. Posthumus, B. Doornbos-van der Meer, C.G. Kallenberg, and P.C. Limburg. 2007. Regulation of cytokine-induced HIF-1alpha expression in rheumatoid synovial fibroblasts. Annals of the New York Academy of Sciences 1108: 340–348.PubMedCrossRef Westra, J., E. Brouwer, R. Bos, M.D. Posthumus, B. Doornbos-van der Meer, C.G. Kallenberg, and P.C. Limburg. 2007. Regulation of cytokine-induced HIF-1alpha expression in rheumatoid synovial fibroblasts. Annals of the New York Academy of Sciences 1108: 340–348.PubMedCrossRef
21.
go back to reference Georganas, C., H. Liu, H. Perlman, A. Hoffmann, B. Thimmapaya, and R.M. Pope. 2000. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: The dominant role for NF-kappa B but not C/EBP beta or c-Jun. The Journal of Immunology 165: 7199–7206.PubMedCrossRef Georganas, C., H. Liu, H. Perlman, A. Hoffmann, B. Thimmapaya, and R.M. Pope. 2000. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: The dominant role for NF-kappa B but not C/EBP beta or c-Jun. The Journal of Immunology 165: 7199–7206.PubMedCrossRef
22.
go back to reference Luo, X., X. Zuo, Y. Zhou, B. Zhang, Y. Shi, M. Liu, K. Wang, D.R. McMillian, and X. Xiao. 2008. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy 10: R41.CrossRef Luo, X., X. Zuo, Y. Zhou, B. Zhang, Y. Shi, M. Liu, K. Wang, D.R. McMillian, and X. Xiao. 2008. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy 10: R41.CrossRef
23.
go back to reference Mo, X.R., J.W. Xie, G.J. Lv, Y.P. Ke, and X.J. Luo. 2017. Effects of TAK gene silencing on the expressions of IL-6 and IL-8 induced by TNF-alpha in fibroblast-like synoviocytes. Zhongguo Ying Yong Sheng Li Xue Za Zhi 33: 471–475.PubMed Mo, X.R., J.W. Xie, G.J. Lv, Y.P. Ke, and X.J. Luo. 2017. Effects of TAK gene silencing on the expressions of IL-6 and IL-8 induced by TNF-alpha in fibroblast-like synoviocytes. Zhongguo Ying Yong Sheng Li Xue Za Zhi 33: 471–475.PubMed
24.
go back to reference Zhang, J., F.F. Gao, and J. Xie. 2021. LncRNA linc00152/NF-kappaB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 9: 681–693.PubMedPubMedCentralCrossRef Zhang, J., F.F. Gao, and J. Xie. 2021. LncRNA linc00152/NF-kappaB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 9: 681–693.PubMedPubMedCentralCrossRef
25.
go back to reference Li, G., Y. Zhang, Y. Qian, H. Zhang, S. Guo, M. Sunagawa, T. Hisamitsu, and Y. Liu. 2013. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Molecular Immunology 53: 227–236.PubMedCrossRef Li, G., Y. Zhang, Y. Qian, H. Zhang, S. Guo, M. Sunagawa, T. Hisamitsu, and Y. Liu. 2013. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Molecular Immunology 53: 227–236.PubMedCrossRef
26.
go back to reference Hui, W., C. Zhao, and S.G. Bourgoin. 2017. Differential effects of inhibitor combinations on lysophosphatidic acid-mediated chemokine secretion in unprimed and tumor necrosis factor-alpha-primed synovial fibroblasts. Frontiers in Pharmacology 8: 848.PubMedPubMedCentralCrossRef Hui, W., C. Zhao, and S.G. Bourgoin. 2017. Differential effects of inhibitor combinations on lysophosphatidic acid-mediated chemokine secretion in unprimed and tumor necrosis factor-alpha-primed synovial fibroblasts. Frontiers in Pharmacology 8: 848.PubMedPubMedCentralCrossRef
27.
go back to reference Fabre, C., G. Carvalho, E. Tasdemir, T. Braun, L. Ades, J. Grosjean, S. Boehrer, D. Metivier, S. Souquere, G. Pierron, P. Fenaux, and G. Kroemer. 2007. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083.PubMedCrossRef Fabre, C., G. Carvalho, E. Tasdemir, T. Braun, L. Ades, J. Grosjean, S. Boehrer, D. Metivier, S. Souquere, G. Pierron, P. Fenaux, and G. Kroemer. 2007. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083.PubMedCrossRef
28.
go back to reference Taylor, C.T., and E.P. Cummins. 2009. The role of NF-kappaB in hypoxia-induced gene expression. Annals of the New York Academy of Sciences 1177: 178–184.PubMedCrossRef Taylor, C.T., and E.P. Cummins. 2009. The role of NF-kappaB in hypoxia-induced gene expression. Annals of the New York Academy of Sciences 1177: 178–184.PubMedCrossRef
29.
go back to reference Maxwell, P.J., R. Gallagher, A. Seaton, C. Wilson, P. Scullin, J. Pettigrew, I.J. Stratford, K.J. Williams, P.G. Johnston, and D.J. Waugh. 2007. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 26: 7333–7345.PubMedCrossRef Maxwell, P.J., R. Gallagher, A. Seaton, C. Wilson, P. Scullin, J. Pettigrew, I.J. Stratford, K.J. Williams, P.G. Johnston, and D.J. Waugh. 2007. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 26: 7333–7345.PubMedCrossRef
30.
go back to reference Akimoto, R., T. Tanaka, T. Nakano, Y. Hozumi, K. Kawamae, and K. Goto. 2020. DGKzeta depletion attenuates HIF-1alpha induction and SIRT1 expression, but enhances TAK1-mediated AMPKalpha phosphorylation under hypoxia. Cellular Signalling 71: 109618.PubMedCrossRef Akimoto, R., T. Tanaka, T. Nakano, Y. Hozumi, K. Kawamae, and K. Goto. 2020. DGKzeta depletion attenuates HIF-1alpha induction and SIRT1 expression, but enhances TAK1-mediated AMPKalpha phosphorylation under hypoxia. Cellular Signalling 71: 109618.PubMedCrossRef
31.
go back to reference Lee, Y.A., H.M. Choi, S.H. Lee, S.J. Hong, H.I. Yang, M.C. Yoo, and K.S. Kim. 2012. Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51: 443–450.PubMedCrossRef Lee, Y.A., H.M. Choi, S.H. Lee, S.J. Hong, H.I. Yang, M.C. Yoo, and K.S. Kim. 2012. Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51: 443–450.PubMedCrossRef
32.
go back to reference Ahn, J.K., E.M. Koh, H.S. Cha, Y.S. Lee, J. Kim, E.K. Bae, and K.S. Ahn. 2008. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 834–839.PubMedCrossRef Ahn, J.K., E.M. Koh, H.S. Cha, Y.S. Lee, J. Kim, E.K. Bae, and K.S. Ahn. 2008. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 834–839.PubMedCrossRef
33.
go back to reference Charbonneau, M., K. Harper, F. Grondin, M. Pelmus, P.P. McDonald, and C.M. Dubois. 2007. Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. Journal of Biological Chemistry 282: 33714–33724.PubMedCrossRef Charbonneau, M., K. Harper, F. Grondin, M. Pelmus, P.P. McDonald, and C.M. Dubois. 2007. Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. Journal of Biological Chemistry 282: 33714–33724.PubMedCrossRef
34.
go back to reference Islam, S.M.T., J. Won, M. Khan, M.D. Mannie, and I. Singh. 2021. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 164: 31–42.PubMedPubMedCentralCrossRef Islam, S.M.T., J. Won, M. Khan, M.D. Mannie, and I. Singh. 2021. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 164: 31–42.PubMedPubMedCentralCrossRef
35.
go back to reference Taylor, C.T., G. Doherty, P.G. Fallon, and E.P. Cummins. 2016. Hypoxia-dependent regulation of inflammatory pathways in immune cells. The Journal of Clinical Investigation 126: 3716–3724.PubMedPubMedCentralCrossRef Taylor, C.T., G. Doherty, P.G. Fallon, and E.P. Cummins. 2016. Hypoxia-dependent regulation of inflammatory pathways in immune cells. The Journal of Clinical Investigation 126: 3716–3724.PubMedPubMedCentralCrossRef
36.
go back to reference Li, X., H. Kimura, K. Hirota, K. Kasuno, K. Torii, T. Okada, H. Kurooka, Y. Yokota, and H. Yoshida. 2005. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney International 68: 569–583.PubMedCrossRef Li, X., H. Kimura, K. Hirota, K. Kasuno, K. Torii, T. Okada, H. Kurooka, Y. Yokota, and H. Yoshida. 2005. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney International 68: 569–583.PubMedCrossRef
37.
go back to reference Lee, S.H., Y.J. Lee, and H.J. Han. 2010. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-kappaB, and HIF-1alpha. Journal of Cellular Physiology 222: 574–585.PubMed Lee, S.H., Y.J. Lee, and H.J. Han. 2010. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-kappaB, and HIF-1alpha. Journal of Cellular Physiology 222: 574–585.PubMed
38.
go back to reference Cetin, A., T. Kaya, N. Demirkoprulu, B. Karadas, B. Duran, and M. Cetin. 2004. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits the spontaneous contractions of isolated pregnant rat myometrium. Journal of Pharmacological Sciences 94: 19–24.PubMedCrossRef Cetin, A., T. Kaya, N. Demirkoprulu, B. Karadas, B. Duran, and M. Cetin. 2004. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits the spontaneous contractions of isolated pregnant rat myometrium. Journal of Pharmacological Sciences 94: 19–24.PubMedCrossRef
39.
go back to reference Flores-Costa, R., J. Alcaraz-Quiles, E. Titos, C. Lopez-Vicario, M. Casulleras, M. Duran-Guell, B. Rius, A. Diaz, K. Hall, C. Shea, R. Sarno, M. Currie, J.L. Masferrer, and J. Claria. 2018. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. British Journal of Pharmacology 175: 953–967.PubMedPubMedCentralCrossRef Flores-Costa, R., J. Alcaraz-Quiles, E. Titos, C. Lopez-Vicario, M. Casulleras, M. Duran-Guell, B. Rius, A. Diaz, K. Hall, C. Shea, R. Sarno, M. Currie, J.L. Masferrer, and J. Claria. 2018. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. British Journal of Pharmacology 175: 953–967.PubMedPubMedCentralCrossRef
40.
go back to reference Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, and M. Karin. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.PubMedPubMedCentralCrossRef Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, and M. Karin. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.PubMedPubMedCentralCrossRef
41.
go back to reference Culver, C., A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas, and S. Rocha. 2010. Mechanism of hypoxia-induced NF-kappaB. Molecular and Cellular Biology 30: 4901–4921.PubMedPubMedCentralCrossRef Culver, C., A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas, and S. Rocha. 2010. Mechanism of hypoxia-induced NF-kappaB. Molecular and Cellular Biology 30: 4901–4921.PubMedPubMedCentralCrossRef
42.
go back to reference Lian, L.H., Q. Jin, S.Z. Song, Y.L. Wu, T. Bai, S. Jiang, Q. Li, N. Yang, and J.X. Nan. 2013. Ginsenoside Rh2 downregulates LPS-induced NF- kappa B activation through inhibition of TAK1 phosphorylation in RAW 264.7 murine macrophage. Evidence-Based Complementary and Alternative Medicine 2013: 646728.PubMedPubMedCentralCrossRef Lian, L.H., Q. Jin, S.Z. Song, Y.L. Wu, T. Bai, S. Jiang, Q. Li, N. Yang, and J.X. Nan. 2013. Ginsenoside Rh2 downregulates LPS-induced NF- kappa B activation through inhibition of TAK1 phosphorylation in RAW 264.7 murine macrophage. Evidence-Based Complementary and Alternative Medicine 2013: 646728.PubMedPubMedCentralCrossRef
43.
go back to reference Zhou, Y., T. Tao, G. Liu, X. Gao, Y. Gao, Z. Zhuang, Y. Lu, H. Wang, W. Li, L. Wu, D. Zhang, and C. Hang. 2021. TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-kappaB pathways. Cell Death & Disease 12: 10.CrossRef Zhou, Y., T. Tao, G. Liu, X. Gao, Y. Gao, Z. Zhuang, Y. Lu, H. Wang, W. Li, L. Wu, D. Zhang, and C. Hang. 2021. TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-kappaB pathways. Cell Death & Disease 12: 10.CrossRef
44.
go back to reference Hammaker, D.R., D.L. Boyle, M. Chabaud-Riou, and G.S. Firestein. 2004. Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis. The Journal of Immunology 172: 1612–1618.PubMedCrossRef Hammaker, D.R., D.L. Boyle, M. Chabaud-Riou, and G.S. Firestein. 2004. Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis. The Journal of Immunology 172: 1612–1618.PubMedCrossRef
45.
go back to reference Luo, X., Y. Chen, G. Lv, Z. Zhou, J. Chen, X. Mo, and J. Xie. 2017. Adenovirus-mediated small interfering RNA targeting TAK1 ameliorates joint inflammation with collagen-induced arthritis in mice. Inflammation 40: 894–903.PubMedCrossRef Luo, X., Y. Chen, G. Lv, Z. Zhou, J. Chen, X. Mo, and J. Xie. 2017. Adenovirus-mediated small interfering RNA targeting TAK1 ameliorates joint inflammation with collagen-induced arthritis in mice. Inflammation 40: 894–903.PubMedCrossRef
Metadata
Title
Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling
Authors
Guofen Wang
Junsong Wang
Xian Li
Qiyang Wu
Ruifeng Yao
Xinjing Luo
Publication date
06-01-2023
Publisher
Springer US
Published in
Inflammation / Issue 3/2023
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01779-x

Other articles of this Issue 3/2023

Inflammation 3/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine