Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | Rhabdomyosarcoma | Correspondence

Genotype–phenotype associations within the Li-Fraumeni spectrum: a report from the German Registry

Authors: Judith Penkert, Farina J. Strüwe, Christina M. Dutzmann, Beate B. Doergeloh, Emilie Montellier, Claire Freycon, Myriam Keymling, Heinz-Peter Schlemmer, Birte Sänger, Beatrice Hoffmann, Tanja Gerasimov, Claudia Blattmann, Sebastian Fetscher, Michael Frühwald, Simone Hettmer, Uwe Kordes, Vita Ridola, Sabine Kroiss Benninger, Angela Mastronuzzi, Sarah Schott, Juliane Nees, Aram Prokop, Antje Redlich, Markus G. Seidel, Stefanie Zimmermann, Kristian W. Pajtler, Stefan M. Pfister, Pierre Hainaut, Christian P. Kratz

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by pathogenic TP53 variants. The condition represents one of the most relevant genetic causes of cancer in children and adults due to its frequency and high cancer risk. The term Li-Fraumeni spectrum reflects the evolving phenotypic variability of the condition. Within this spectrum, patients who meet specific LFS criteria are diagnosed with LFS, while patients who do not meet these criteria are diagnosed with attenuated LFS. To explore genotype–phenotype correlations we analyzed 141 individuals from 94 families with pathogenic TP53 variants registered in the German Cancer Predisposition Syndrome Registry. Twenty-one (22%) families had attenuated LFS and 73 (78%) families met the criteria of LFS. NULL variants occurred in 32 (44%) families with LFS and in two (9.5%) families with attenuated LFS (P value < 0.01). Kato partially functional variants were present in 10 out of 53 (19%) families without childhood cancer except adrenocortical carcinoma (ACC) versus 0 out of 41 families with childhood cancer other than ACC alone (P value < 0.01). Our study suggests genotype–phenotype correlations encouraging further analyses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365–73.PubMed Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365–73.PubMed
2.
go back to reference Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.PubMed Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.PubMed
3.
go back to reference Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233–8.CrossRef Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233–8.CrossRef
4.
go back to reference Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, Gauthier-Villars M, Stoppa-Lyonnet D, Consolino E, Brugieres L, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33(21):2345–52.CrossRef Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, Gauthier-Villars M, Stoppa-Lyonnet D, Consolino E, Brugieres L, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33(21):2345–52.CrossRef
5.
go back to reference Kratz CP, Freycon C, Maxwell KN, Nichols KE, Schiffman JD, Evans DG, Achatz MI, Savage SA, Weitzel JN, Garber JE, et al. Analysis of the Li-Fraumeni spectrum based on an international germline TP53 variant data set: an international agency for research on cancer TP53 database analysis. JAMA Oncol. 2021;7(12):1800–5.CrossRef Kratz CP, Freycon C, Maxwell KN, Nichols KE, Schiffman JD, Evans DG, Achatz MI, Savage SA, Weitzel JN, Garber JE, et al. Analysis of the Li-Fraumeni spectrum based on an international germline TP53 variant data set: an international agency for research on cancer TP53 database analysis. JAMA Oncol. 2021;7(12):1800–5.CrossRef
6.
go back to reference Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, Attardi LD, Crowley S, Evans DG, Feng BJ, et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 2021;42(3):223–36.CrossRef Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, Attardi LD, Crowley S, Evans DG, Feng BJ, et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 2021;42(3):223–36.CrossRef
7.
go back to reference Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 2003;100(14):8424–9.CrossRef Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 2003;100(14):8424–9.CrossRef
8.
go back to reference Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50(10):1381–7.CrossRef Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50(10):1381–7.CrossRef
9.
go back to reference Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell. 2018;71(5):873.CrossRef Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell. 2018;71(5):873.CrossRef
10.
go back to reference Monti P, Perfumo C, Bisio A, Ciribilli Y, Menichini P, Russo D, Umbach DM, Resnick MA, Inga A, Fronza G. Dominant-negative features of mutant TP53 in germline carriers have limited impact on cancer outcomes. Mol Cancer Res. 2011;9(3):271–9.CrossRef Monti P, Perfumo C, Bisio A, Ciribilli Y, Menichini P, Russo D, Umbach DM, Resnick MA, Inga A, Fronza G. Dominant-negative features of mutant TP53 in germline carriers have limited impact on cancer outcomes. Mol Cancer Res. 2011;9(3):271–9.CrossRef
11.
go back to reference Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW, Yi SY, Brachmann RK. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis. 2007;28(2):289–98.CrossRef Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW, Yi SY, Brachmann RK. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis. 2007;28(2):289–98.CrossRef
12.
go back to reference Rana HQ, Clifford J, Hoang L, LaDuca H, Black MH, Li S, McGoldrick K, Speare V, Dolinsky JS, Gau CL, et al. Genotype–phenotype associations among panel-based TP53+ subjects. Genet Med. 2019;21(11):2478–84.CrossRef Rana HQ, Clifford J, Hoang L, LaDuca H, Black MH, Li S, McGoldrick K, Speare V, Dolinsky JS, Gau CL, et al. Genotype–phenotype associations among panel-based TP53+ subjects. Genet Med. 2019;21(11):2478–84.CrossRef
13.
go back to reference Fortuno C, Pesaran T, Mester J, Dolinsky J, Yussuf A, McGoldrick K, James PA, Spurdle AB. Genotype-phenotype correlations among TP53 carriers: literature review and analysis of probands undergoing multi-gene panel testing and single-gene testing. Cancer Genet. 2020;248–249:11–7.CrossRef Fortuno C, Pesaran T, Mester J, Dolinsky J, Yussuf A, McGoldrick K, James PA, Spurdle AB. Genotype-phenotype correlations among TP53 carriers: literature review and analysis of probands undergoing multi-gene panel testing and single-gene testing. Cancer Genet. 2020;248–249:11–7.CrossRef
Metadata
Title
Genotype–phenotype associations within the Li-Fraumeni spectrum: a report from the German Registry
Authors
Judith Penkert
Farina J. Strüwe
Christina M. Dutzmann
Beate B. Doergeloh
Emilie Montellier
Claire Freycon
Myriam Keymling
Heinz-Peter Schlemmer
Birte Sänger
Beatrice Hoffmann
Tanja Gerasimov
Claudia Blattmann
Sebastian Fetscher
Michael Frühwald
Simone Hettmer
Uwe Kordes
Vita Ridola
Sabine Kroiss Benninger
Angela Mastronuzzi
Sarah Schott
Juliane Nees
Aram Prokop
Antje Redlich
Markus G. Seidel
Stefanie Zimmermann
Kristian W. Pajtler
Stefan M. Pfister
Pierre Hainaut
Christian P. Kratz
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01332-1

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine