Skip to main content
Top
Published in: Molecular Cancer 1/2008

Open Access 01-12-2008 | Research

Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

Authors: Teresa WM Fan, Magda Kucia, Kacper Jankowski, Richard M Higashi, Janina Ratajczak, Marius Z Ratajczak, Andrew N Lane

Published in: Molecular Cancer | Issue 1/2008

Login to get access

Abstract

Background

The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30) and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis.

Results

The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells.

Conclusion

The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells. The data further show that the mitochondria remain functional in Krebs' cycle activity and respiratory electron transfer that enables continued accelerated glycolysis. This may be a common adaptive strategy in cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J: Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Research. 2003, 63: 7926-7935.PubMed Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J: Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Research. 2003, 63: 7926-7935.PubMed
2.
go back to reference Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ: CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. 2002, 100: 2597-2606.CrossRefPubMed Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ: CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. 2002, 100: 2597-2606.CrossRefPubMed
3.
go back to reference Wysoczynski M, Miekus K, Jankowski K, Wanzeck J, Bertolone S, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ: Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research. 2007, 67: 2131-2140.CrossRefPubMed Wysoczynski M, Miekus K, Jankowski K, Wanzeck J, Bertolone S, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ: Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research. 2007, 67: 2131-2140.CrossRefPubMed
4.
go back to reference Scotlandi K, Picci P: Targeting insulin-like growth factor 1 receptor in sarcomas. Current Opinion in Oncology. 2008, 20: 419-427.CrossRefPubMed Scotlandi K, Picci P: Targeting insulin-like growth factor 1 receptor in sarcomas. Current Opinion in Oncology. 2008, 20: 419-427.CrossRefPubMed
5.
go back to reference Baer C, Nees M, Breit S, Selle B, Kulozik AE, Schaefer KL, Braun Y, Wai D, Poremba C: Profiling and functional annotation of MRNA gene expression in pediatric rhabdomyosarcoma and Ewing's sarcoma. Int J Cancer. 2004, 110 (5): 687-694.CrossRefPubMed Baer C, Nees M, Breit S, Selle B, Kulozik AE, Schaefer KL, Braun Y, Wai D, Poremba C: Profiling and functional annotation of MRNA gene expression in pediatric rhabdomyosarcoma and Ewing's sarcoma. Int J Cancer. 2004, 110 (5): 687-694.CrossRefPubMed
6.
go back to reference Rarnanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102: 5992-5997.CrossRef Rarnanathan A, Wang C, Schreiber SL: Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102: 5992-5997.CrossRef
8.
go back to reference Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006, 25: 7225-7234.CrossRefPubMed Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW, Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 2006, 25: 7225-7234.CrossRefPubMed
10.
go back to reference Schmid D, Burmester GR, Tripmacher R, Kuhnke A, Buttgereit F: Bioenergetics of human peripheral blood mononuclear cell metabolism in quiescent, activated, and glucocorticoid-treated states. Bioscience Reports. 2000, 20: 289-302.CrossRefPubMed Schmid D, Burmester GR, Tripmacher R, Kuhnke A, Buttgereit F: Bioenergetics of human peripheral blood mononuclear cell metabolism in quiescent, activated, and glucocorticoid-treated states. Bioscience Reports. 2000, 20: 289-302.CrossRefPubMed
11.
go back to reference Buttgereit F, Burmester GR, Brand MD: Therapeutically targeting lymphocyte energy metabolism by high-dose glucocorticoids. Biochemical Pharmacology. 2000, 59: 597-603.CrossRefPubMed Buttgereit F, Burmester GR, Brand MD: Therapeutically targeting lymphocyte energy metabolism by high-dose glucocorticoids. Biochemical Pharmacology. 2000, 59: 597-603.CrossRefPubMed
12.
go back to reference Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Research. 2004, 64: 2627-2633.CrossRefPubMed Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Research. 2004, 64: 2627-2633.CrossRefPubMed
13.
go back to reference Wehrle JP, Ng CE, McGovern KA, Aiken NR, Shungu DC, Chance EM, Glickson JD: Metabolism of alternative substrates and the bioenergetic status of EMT6 tumor cell spheroids. NMR in Biomedicine. 2000, 13: 349-360.CrossRefPubMed Wehrle JP, Ng CE, McGovern KA, Aiken NR, Shungu DC, Chance EM, Glickson JD: Metabolism of alternative substrates and the bioenergetic status of EMT6 tumor cell spheroids. NMR in Biomedicine. 2000, 13: 349-360.CrossRefPubMed
14.
go back to reference Lanks KW, Li PW: End Products of Glucose and Glutamine Metabolism by Cultured Cell Lines. Journal of Cellular Physiology. 1988, 135: 151-155.CrossRefPubMed Lanks KW, Li PW: End Products of Glucose and Glutamine Metabolism by Cultured Cell Lines. Journal of Cellular Physiology. 1988, 135: 151-155.CrossRefPubMed
15.
go back to reference Garber K: Energy boost: The Warburg effect returns in a new theory of cancer. Journal of the National Cancer Institute. 2004, 96: 1805-1806.CrossRefPubMed Garber K: Energy boost: The Warburg effect returns in a new theory of cancer. Journal of the National Cancer Institute. 2004, 96: 1805-1806.CrossRefPubMed
16.
go back to reference Werle M, Jahn L, Kreuzer J, Hofele J, Elsasser A, Ackermann C, Katus HA, Vogt AM: Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. Journal of Biomedical Science. 2005, 12: 827-834.CrossRefPubMed Werle M, Jahn L, Kreuzer J, Hofele J, Elsasser A, Ackermann C, Katus HA, Vogt AM: Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. Journal of Biomedical Science. 2005, 12: 827-834.CrossRefPubMed
18.
go back to reference Fell D: Understanding the Control of Metabolism. 1997, London: Portland Press. Fell D: Understanding the Control of Metabolism. 1997, London: Portland Press.
19.
go back to reference Ganong WF: Excitable Tissue: Muscle. Review of Medical Physiology. 2003, New York: McGraw-Hill. Ganong WF: Excitable Tissue: Muscle. Review of Medical Physiology. 2003, New York: McGraw-Hill.
20.
go back to reference Perriello G, Jorde R, Nurjhan N, Stumvoll M, Dailey G, Jenssen T, Bier DM, Gerich JE: Estimation of Glucose-Alanine-Lactate-Glutamine Cycles in Postabsorptive Humans – Role of Skeletal-Muscle. Am J Physiol. 1995, 269 (3 Pt 1): E443-E450.PubMed Perriello G, Jorde R, Nurjhan N, Stumvoll M, Dailey G, Jenssen T, Bier DM, Gerich JE: Estimation of Glucose-Alanine-Lactate-Glutamine Cycles in Postabsorptive Humans – Role of Skeletal-Muscle. Am J Physiol. 1995, 269 (3 Pt 1): E443-E450.PubMed
21.
go back to reference Enerson BE, Drewes LR: Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery. Journal of Pharmaceutical Sciences. 2003, 92: 1531-1544.CrossRefPubMed Enerson BE, Drewes LR: Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery. Journal of Pharmaceutical Sciences. 2003, 92: 1531-1544.CrossRefPubMed
22.
go back to reference Halestrap AP, Price NT: The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical Journal. 1999, 343: 281-299.PubMedCentralCrossRefPubMed Halestrap AP, Price NT: The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical Journal. 1999, 343: 281-299.PubMedCentralCrossRefPubMed
23.
go back to reference Moolenaar WH: Regulation of Cytoplasmic Ph by Na+/H+ Exchange. Trends in Biochemical Sciences. 1986, 11: 141-143.CrossRef Moolenaar WH: Regulation of Cytoplasmic Ph by Na+/H+ Exchange. Trends in Biochemical Sciences. 1986, 11: 141-143.CrossRef
24.
go back to reference Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nature Reviews Cancer. 2004, 4: 891-899.CrossRefPubMed Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nature Reviews Cancer. 2004, 4: 891-899.CrossRefPubMed
25.
go back to reference Gillies RJ, Gatenby RA: Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?. Journal of Bioenergetics and Biomembranes. 2007, 39: 251-257.CrossRefPubMed Gillies RJ, Gatenby RA: Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?. Journal of Bioenergetics and Biomembranes. 2007, 39: 251-257.CrossRefPubMed
26.
go back to reference Christofk HR, Heiden Vander MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452: 230-U274.CrossRefPubMed Christofk HR, Heiden Vander MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452: 230-U274.CrossRefPubMed
27.
go back to reference Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Seminars in Cancer Biology. 2005, 15: 300-308.CrossRefPubMed Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Seminars in Cancer Biology. 2005, 15: 300-308.CrossRefPubMed
28.
go back to reference Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E: Pyruvate kinase type M2: A crossroad in the tumor metabolome. British Journal of Nutrition. 2002, 87: S23-S29.CrossRefPubMed Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E: Pyruvate kinase type M2: A crossroad in the tumor metabolome. British Journal of Nutrition. 2002, 87: S23-S29.CrossRefPubMed
29.
go back to reference Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E: Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Research. 2000, 20: 5151-5154.PubMed Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E: Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Research. 2000, 20: 5151-5154.PubMed
30.
go back to reference Mazurek S, Eigenbrodt E: The tumor metabolome. Anticancer Research. 2003, 23: 1149-1154.PubMed Mazurek S, Eigenbrodt E: The tumor metabolome. Anticancer Research. 2003, 23: 1149-1154.PubMed
31.
go back to reference Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E: Energy metabolism in tumor cells. Febs Journal. 2007, 274: 1393-1418.CrossRefPubMed Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E: Energy metabolism in tumor cells. Febs Journal. 2007, 274: 1393-1418.CrossRefPubMed
32.
go back to reference Elbers JRJ, Vanunnik JAM, Rijksen G, Vanoirschot BA, Roholl PJM, Oosting J, Staal GEJ: Pyruvate-Kinase Activity and Isozyme Composition in Normal Fibrous Tissue and Fibroblastic Proliferations. Cancer. 1991, 67: 2552-2559.CrossRefPubMed Elbers JRJ, Vanunnik JAM, Rijksen G, Vanoirschot BA, Roholl PJM, Oosting J, Staal GEJ: Pyruvate-Kinase Activity and Isozyme Composition in Normal Fibrous Tissue and Fibroblastic Proliferations. Cancer. 1991, 67: 2552-2559.CrossRefPubMed
33.
go back to reference Lane AN, Fan TW-M, Higashi RM: Stable isotope assisted metabolomics in cancer research. IUBMB Life. 2008, 60: 124-129.CrossRefPubMed Lane AN, Fan TW-M, Higashi RM: Stable isotope assisted metabolomics in cancer research. IUBMB Life. 2008, 60: 124-129.CrossRefPubMed
34.
go back to reference Lane AN, Fan TW, Higashi RM: Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods Cell Biol. Edited by: John J, Correia HWD. 2008, 84: 541-588. San Diego: Academic Press. Lane AN, Fan TW, Higashi RM: Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods Cell Biol. Edited by: John J, Correia HWD. 2008, 84: 541-588. San Diego: Academic Press.
35.
go back to reference Lane AN, Fan TW: Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics. 2007, 3: 79-86.CrossRef Lane AN, Fan TW: Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics. 2007, 3: 79-86.CrossRef
36.
go back to reference Fan TW, Lane AN: Structure-based profiling of Metabolites and Isotopomers by NMR. Progress in NMR Spectroscopy. 2008, 52: 69-117.CrossRef Fan TW, Lane AN: Structure-based profiling of Metabolites and Isotopomers by NMR. Progress in NMR Spectroscopy. 2008, 52: 69-117.CrossRef
37.
go back to reference Fan T, Bandura L, Higashi R, Lane A: Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics. 2005, 1: 1-15.CrossRef Fan T, Bandura L, Higashi R, Lane A: Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics. 2005, 1: 1-15.CrossRef
38.
go back to reference DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104: 19345-19350.PubMedCentralCrossRefPubMed DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104: 19345-19350.PubMedCentralCrossRefPubMed
39.
go back to reference Zwingmann C, Richter-Landsberg C, Leibfritz D: C-13 isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia. 2001, 34: 200-212.CrossRefPubMed Zwingmann C, Richter-Landsberg C, Leibfritz D: C-13 isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia. 2001, 34: 200-212.CrossRefPubMed
40.
go back to reference Lu D, Mulder H, Zhao P, Burgess SC, Jensen MV, Kamzolova S, Newgard CB, Sherry AD: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proceedings of the National Academy of Sciences of the United States of America. 2002, 99: 2708-2713.PubMedCentralCrossRefPubMed Lu D, Mulder H, Zhao P, Burgess SC, Jensen MV, Kamzolova S, Newgard CB, Sherry AD: 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proceedings of the National Academy of Sciences of the United States of America. 2002, 99: 2708-2713.PubMedCentralCrossRefPubMed
41.
go back to reference Lean CL, Bourne R, Thompson JF, Scolyer RA, Stretch J, Li LXL, Russell P, Mountford C: Rapid detection of metastatic melanoma in lymph nodes using proton magnetic resonance spectroscopy of fine needle aspiration biopsy specimens. Melanoma Research. 2003, 13: 259-261.CrossRefPubMed Lean CL, Bourne R, Thompson JF, Scolyer RA, Stretch J, Li LXL, Russell P, Mountford C: Rapid detection of metastatic melanoma in lymph nodes using proton magnetic resonance spectroscopy of fine needle aspiration biopsy specimens. Melanoma Research. 2003, 13: 259-261.CrossRefPubMed
42.
go back to reference Eliyahu G, Kreizman T, Degani H: Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. Int J Cancer. 2007, 120 (8): 1721-1730.CrossRefPubMed Eliyahu G, Kreizman T, Degani H: Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. Int J Cancer. 2007, 120 (8): 1721-1730.CrossRefPubMed
43.
go back to reference Glunde K, Jie C, Bhujwalla ZM: Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Research. 2004, 64: 4270-4276.CrossRefPubMed Glunde K, Jie C, Bhujwalla ZM: Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Research. 2004, 64: 4270-4276.CrossRefPubMed
44.
go back to reference Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H: Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Research. 2002, 62: 1966-1970.PubMed Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H: Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Research. 2002, 62: 1966-1970.PubMed
45.
go back to reference Glunde K, Jacobs MA, Bhujwalla ZM: Choline metabolism in cancer: implications for diagnosis and therapy. Expert Review of Molecular Diagnostics. 2006, 6: 821-829.CrossRefPubMed Glunde K, Jacobs MA, Bhujwalla ZM: Choline metabolism in cancer: implications for diagnosis and therapy. Expert Review of Molecular Diagnostics. 2006, 6: 821-829.CrossRefPubMed
46.
go back to reference Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J: Quantitative analysis of prostate metabolites using H-1 HR-MAS spectroscopy. Magnetic Resonance in Medicine. 2006, 55: 1257-1264.CrossRefPubMed Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J: Quantitative analysis of prostate metabolites using H-1 HR-MAS spectroscopy. Magnetic Resonance in Medicine. 2006, 55: 1257-1264.CrossRefPubMed
47.
go back to reference Lloyd SG, Zeng HD, Wang PP, Chatham JC: Lactate isotopomer analysis by H-1 NMR spectroscopy: Consideration of long-range nuclear spin-spin interactions. Magnetic Resonance in Medicine. 2004, 51: 1279-1282.CrossRefPubMed Lloyd SG, Zeng HD, Wang PP, Chatham JC: Lactate isotopomer analysis by H-1 NMR spectroscopy: Consideration of long-range nuclear spin-spin interactions. Magnetic Resonance in Medicine. 2004, 51: 1279-1282.CrossRefPubMed
48.
go back to reference Mazurek S, Eigenbrodt E, Failing K, Steinberg P: Alterations in the glycolytic and glutaminolytic pathways after malignant transformation of rat liver oval cells. Journal of Cellular Physiology. 1999, 181: 136-146.CrossRefPubMed Mazurek S, Eigenbrodt E, Failing K, Steinberg P: Alterations in the glycolytic and glutaminolytic pathways after malignant transformation of rat liver oval cells. Journal of Cellular Physiology. 1999, 181: 136-146.CrossRefPubMed
49.
go back to reference Kong X, Manchester J, Salmons S, Lawrence JCJ: Glucose transporters in single skeletal muscle fibers. Relationship to hexokinase and regulation of contractile activity. J Biol Chem. 1994, 269: 12963-12967.PubMed Kong X, Manchester J, Salmons S, Lawrence JCJ: Glucose transporters in single skeletal muscle fibers. Relationship to hexokinase and regulation of contractile activity. J Biol Chem. 1994, 269: 12963-12967.PubMed
50.
go back to reference Artemov D, Bhujwalla ZM, Pilatus U, Glickson JD: Two-compartment model for determination of glycolytic rates of solid tumors by in vivo C-13 NMR spectroscopy. NMR in Biomedicine. 1998, 11: 395-404.CrossRefPubMed Artemov D, Bhujwalla ZM, Pilatus U, Glickson JD: Two-compartment model for determination of glycolytic rates of solid tumors by in vivo C-13 NMR spectroscopy. NMR in Biomedicine. 1998, 11: 395-404.CrossRefPubMed
51.
go back to reference Villar-Palasi C, Guinovart JJ: The role of glucose-6-phosphate in the control of glycogen synthase. FASEB J. 1997, 11: 544-558.PubMed Villar-Palasi C, Guinovart JJ: The role of glucose-6-phosphate in the control of glycogen synthase. FASEB J. 1997, 11: 544-558.PubMed
52.
go back to reference Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1 alpha and the glycolytic phenotype in tumors. Neoplasia. 2005, 7: 324-330.PubMedCentralCrossRefPubMed Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1 alpha and the glycolytic phenotype in tumors. Neoplasia. 2005, 7: 324-330.PubMedCentralCrossRefPubMed
53.
go back to reference Fan TWM, Higashi RM, Lane AN: Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metabolism Reviews. 2006, 38: 707-732.CrossRefPubMed Fan TWM, Higashi RM, Lane AN: Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metabolism Reviews. 2006, 38: 707-732.CrossRefPubMed
54.
go back to reference Fan TW-M: Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy. 1996, 28: 161-219.CrossRef Fan TW-M: Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy. 1996, 28: 161-219.CrossRef
55.
go back to reference Gradwell MJ, Fan TWM, Lane AN: Analysis of phosphorylated metabolites in crayfish extracts by two-dimensional H-1-P-31 NMR heteronuclear total correlation spectroscopy (heteroTOCSY). Analytical Biochemistry. 1998, 263: 139-149.CrossRefPubMed Gradwell MJ, Fan TWM, Lane AN: Analysis of phosphorylated metabolites in crayfish extracts by two-dimensional H-1-P-31 NMR heteronuclear total correlation spectroscopy (heteroTOCSY). Analytical Biochemistry. 1998, 263: 139-149.CrossRefPubMed
56.
go back to reference Fan TWM, Colmer TD, Lane AN, Higashi RM: Determination of metabolites by proton NMR and GC: Analysis for organic osmolytes in crude tissue extracts. Analytical Biochemistry. 1993, 214: 260-271.CrossRefPubMed Fan TWM, Colmer TD, Lane AN, Higashi RM: Determination of metabolites by proton NMR and GC: Analysis for organic osmolytes in crude tissue extracts. Analytical Biochemistry. 1993, 214: 260-271.CrossRefPubMed
57.
go back to reference Fan TWM, Higashi RM, Lane AN, Jardetzky O: Combined Use of H-1-Nmr and Gc-Ms for Metabolite Monitoring and Invivo H-1-Nmr Assignments. Biochimica Et Biophysica Acta. 1986, 882: 154-167.CrossRefPubMed Fan TWM, Higashi RM, Lane AN, Jardetzky O: Combined Use of H-1-Nmr and Gc-Ms for Metabolite Monitoring and Invivo H-1-Nmr Assignments. Biochimica Et Biophysica Acta. 1986, 882: 154-167.CrossRefPubMed
58.
go back to reference Fan TWM, Higashi RM, Frenkiel TA, Lane AN: Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. Journal of Experimental Botany. 1997, 48: 1655-1666. Fan TWM, Higashi RM, Frenkiel TA, Lane AN: Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. Journal of Experimental Botany. 1997, 48: 1655-1666.
Metadata
Title
Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes
Authors
Teresa WM Fan
Magda Kucia
Kacper Jankowski
Richard M Higashi
Janina Ratajczak
Marius Z Ratajczak
Andrew N Lane
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2008
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-79

Other articles of this Issue 1/2008

Molecular Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine