Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2017

Open Access 01-12-2017 | Research

Revisiting atenolol as a low passive permeability marker

Authors: Xiaomei Chen, Tim Slättengren, Elizabeth C. M. de Lange, David E. Smith, Margareta Hammarlund-Udenaes

Published in: Fluids and Barriers of the CNS | Issue 1/2017

Login to get access

Abstract

Background

Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood–brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB.

Methods

To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis.

Results

The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., Kp,uu,brain) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (Vu, brain) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (fu,brain) of 0.88 ± 0.07.

Conclusions

It is concluded, based on Kp,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.
Literature
2.
go back to reference Pearson AA, Gaffney TE, Walle T, Privitera PJ. A stereoselective central hypotensive action of atenolol. J Pharmacol Exp Ther. 1989;250:759–63.PubMed Pearson AA, Gaffney TE, Walle T, Privitera PJ. A stereoselective central hypotensive action of atenolol. J Pharmacol Exp Ther. 1989;250:759–63.PubMed
3.
go back to reference Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J Pharm Pharm Sci. 2001;4:185–200.PubMed Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J Pharm Pharm Sci. 2001;4:185–200.PubMed
5.
go back to reference Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253–63.CrossRefPubMed Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54:253–63.CrossRefPubMed
6.
go back to reference Smith D, Artursson P, Avdeef A, Di L, Ecker GF, Faller B, Houston JB, Kansy M, Kerns EH, Kramer SD, Lennernas H, van de Waterbeemd H, Sugano K, Testa B. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition. Mol Pharm. 2014;11:1727–38.CrossRefPubMed Smith D, Artursson P, Avdeef A, Di L, Ecker GF, Faller B, Houston JB, Kansy M, Kerns EH, Kramer SD, Lennernas H, van de Waterbeemd H, Sugano K, Testa B. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition. Mol Pharm. 2014;11:1727–38.CrossRefPubMed
7.
go back to reference Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.CrossRefPubMed Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.CrossRefPubMed
9.
go back to reference Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 1970;24:372–6.CrossRefPubMed Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 1970;24:372–6.CrossRefPubMed
10.
go back to reference Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984;247:H484–93.PubMed Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984;247:H484–93.PubMed
11.
go back to reference Hammarlund-Udenaes M. In vivo approaches to assessing the blood–brain barrier. Top Med Chem Ser. 2014;10:21–48. Hammarlund-Udenaes M. In vivo approaches to assessing the blood–brain barrier. Top Med Chem Ser. 2014;10:21–48.
12.
go back to reference Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–50.CrossRefPubMed Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–50.CrossRefPubMed
13.
go back to reference Lindqvist A, Jonsson S, Hammarlund-Udenaes M. Exploring factors causing low brain penetration of the opioid peptide DAMGO through experimental methods and modeling. Mol Pharm. 2016;13:1258–66.CrossRefPubMed Lindqvist A, Jonsson S, Hammarlund-Udenaes M. Exploring factors causing low brain penetration of the opioid peptide DAMGO through experimental methods and modeling. Mol Pharm. 2016;13:1258–66.CrossRefPubMed
14.
go back to reference Delange ECM, Danhof M, Deboer AG, Breimer DD. Critical factors of intracerebral microdialysis as a technique to determined the pharmacokinetics of drugs in rat-brain. Brain Res. 1994;666:1–8.CrossRef Delange ECM, Danhof M, Deboer AG, Breimer DD. Critical factors of intracerebral microdialysis as a technique to determined the pharmacokinetics of drugs in rat-brain. Brain Res. 1994;666:1–8.CrossRef
15.
go back to reference Hammarlund-Udenaes M, Paalzow LK, de Lange EC. Drug equilibration across the blood–brain barrier–pharmacokinetic considerations based on the microdialysis method. Pharm Res. 1997;14:128–34.CrossRefPubMed Hammarlund-Udenaes M, Paalzow LK, de Lange EC. Drug equilibration across the blood–brain barrier–pharmacokinetic considerations based on the microdialysis method. Pharm Res. 1997;14:128–34.CrossRefPubMed
16.
go back to reference Sadiq MW, Borgs A, Okura T, Shimomura K, Kato S, Deguchi Y, Jansson B, Bjorkman S, Terasaki T, Hammarlund-Udenaes M. Diphenhydramine active uptake at the blood–brain barrier and its interaction with oxycodone in vitro and in vivo. J Pharm Sci. 2011;100:3912–23.CrossRefPubMed Sadiq MW, Borgs A, Okura T, Shimomura K, Kato S, Deguchi Y, Jansson B, Bjorkman S, Terasaki T, Hammarlund-Udenaes M. Diphenhydramine active uptake at the blood–brain barrier and its interaction with oxycodone in vitro and in vivo. J Pharm Sci. 2011;100:3912–23.CrossRefPubMed
17.
go back to reference Bouw MR, Hammarlund-Udenaes M. Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method. Pharm Res. 1998;15:1673–9.CrossRefPubMed Bouw MR, Hammarlund-Udenaes M. Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method. Pharm Res. 1998;15:1673–9.CrossRefPubMed
18.
go back to reference Bengtsson J, Bostrom E, Hammarlund-Udenaes M. The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies. J Pharm Sci. 2008;97:3433–41.CrossRefPubMed Bengtsson J, Bostrom E, Hammarlund-Udenaes M. The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies. J Pharm Sci. 2008;97:3433–41.CrossRefPubMed
19.
go back to reference Bostrom E, Simonsson US, Hammarlund-Udenaes M. In vivo blood–brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos. 2006;34:1624–31.CrossRefPubMed Bostrom E, Simonsson US, Hammarlund-Udenaes M. In vivo blood–brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos. 2006;34:1624–31.CrossRefPubMed
20.
go back to reference Sadiq MW, Bostrom E, Keizer R, Bjorkman S, Hammarlund-Udenaes M. Oxymorphone active uptake at the blood–brain barrier and population modeling of its pharmacokinetic-pharmacodynamic relationship. J Pharm Sci. 2013;102:3320–31.CrossRefPubMed Sadiq MW, Bostrom E, Keizer R, Bjorkman S, Hammarlund-Udenaes M. Oxymorphone active uptake at the blood–brain barrier and population modeling of its pharmacokinetic-pharmacodynamic relationship. J Pharm Sci. 2013;102:3320–31.CrossRefPubMed
21.
go back to reference Bickel U, Schumacher OP, Kang YS, Voigt K. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood–brain barrier in the rat. J Pharmacol Exp Ther. 1996;278:107–13.PubMed Bickel U, Schumacher OP, Kang YS, Voigt K. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood–brain barrier in the rat. J Pharmacol Exp Ther. 1996;278:107–13.PubMed
22.
go back to reference Taylor EA, Turner P. The distribution of propranolol, pindolol and atenolol between human-erythrocytes and plasma. Brit J Clin Pharmaco. 1981;12:543–8.CrossRef Taylor EA, Turner P. The distribution of propranolol, pindolol and atenolol between human-erythrocytes and plasma. Brit J Clin Pharmaco. 1981;12:543–8.CrossRef
23.
go back to reference Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos. 2011;39:353–62.CrossRefPubMed Friden M, Bergstrom F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos. 2011;39:353–62.CrossRefPubMed
24.
go back to reference Ennis SR, Betz AL. Sucrose permeability of the blood-retinal and blood-brain barriers. Effects of diabetes, hypertonicity, and iodate. Invest Ophthalmol Vis Sci. 1986;27:1095–102.PubMed Ennis SR, Betz AL. Sucrose permeability of the blood-retinal and blood-brain barriers. Effects of diabetes, hypertonicity, and iodate. Invest Ophthalmol Vis Sci. 1986;27:1095–102.PubMed
25.
go back to reference Neildwyer G, Bartlett J, Mcainsh J, Cruickshank JM. Beta-adrenoceptor blockers and the blood–brain-barrier. Brit J Clin Pharmaco. 1981;11:549–53.CrossRef Neildwyer G, Bartlett J, Mcainsh J, Cruickshank JM. Beta-adrenoceptor blockers and the blood–brain-barrier. Brit J Clin Pharmaco. 1981;11:549–53.CrossRef
26.
go back to reference Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, Fleisher D, Lee KD, Amidon GL. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19:1400–16.CrossRefPubMed Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, Fleisher D, Lee KD, Amidon GL. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19:1400–16.CrossRefPubMed
27.
go back to reference Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6:313–9.CrossRef Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6:313–9.CrossRef
28.
go back to reference Artursson P. Epithelial transport of drugs in cell-culture. 1. A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci. 1990;79:476–82.CrossRefPubMed Artursson P. Epithelial transport of drugs in cell-culture. 1. A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci. 1990;79:476–82.CrossRefPubMed
29.
go back to reference Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer’s disease-related animal models despite reported blood–brain barrier disruption. Drug Metab Dispos. 2010;38:1355–61.CrossRefPubMed Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer’s disease-related animal models despite reported blood–brain barrier disruption. Drug Metab Dispos. 2010;38:1355–61.CrossRefPubMed
30.
go back to reference Scherrmann JM. Drug delivery to brain via the blood–brain barrier. Vascul Pharmacol. 2002;38:349–54.CrossRefPubMed Scherrmann JM. Drug delivery to brain via the blood–brain barrier. Vascul Pharmacol. 2002;38:349–54.CrossRefPubMed
31.
go back to reference International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.CrossRef International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.CrossRef
32.
go back to reference Rosenberg GA, Kyner WT, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol. 1980;238:F42–9.PubMed Rosenberg GA, Kyner WT, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol. 1980;238:F42–9.PubMed
33.
go back to reference Cserr HF, Cooper DN, Milhorat TH. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res. 1977;25(Suppl):461–73.CrossRefPubMed Cserr HF, Cooper DN, Milhorat TH. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res. 1977;25(Suppl):461–73.CrossRefPubMed
34.
go back to reference Avdeef A, Sun N. A new in situ brain perfusion flow correction method for lipophilic drugs based on the pH-dependent Crone-Renkin equation. Pharm Res. 2011;28:517–30.CrossRefPubMed Avdeef A, Sun N. A new in situ brain perfusion flow correction method for lipophilic drugs based on the pH-dependent Crone-Renkin equation. Pharm Res. 2011;28:517–30.CrossRefPubMed
35.
go back to reference Agon P, Goethals P, Van Haver D, Kaufman JM. Permeability of the blood–brain barrier for atenolol studied by positron emission tomography. J Pharm Pharmacol. 1991;43:597–600.CrossRefPubMed Agon P, Goethals P, Van Haver D, Kaufman JM. Permeability of the blood–brain barrier for atenolol studied by positron emission tomography. J Pharm Pharmacol. 1991;43:597–600.CrossRefPubMed
36.
go back to reference Eigenmann DE, Jahne EA, Smiesko M, Hamburger M, Oufir M. Validation of an immortalized human (hBMEC) in vitro blood–brain barrier model. Anal Bioanal Chem. 2016;408:2095–107.CrossRefPubMed Eigenmann DE, Jahne EA, Smiesko M, Hamburger M, Oufir M. Validation of an immortalized human (hBMEC) in vitro blood–brain barrier model. Anal Bioanal Chem. 2016;408:2095–107.CrossRefPubMed
37.
go back to reference Hakkarainen JJ, Jalkanen AJ, Kaariainen TM, Keski-Rahkonen P, Venalainen T, Hokkanen J, Monkkonen J, Suhonen M, Forsberg MM. Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm. 2010;402:27–36.CrossRefPubMed Hakkarainen JJ, Jalkanen AJ, Kaariainen TM, Keski-Rahkonen P, Venalainen T, Hokkanen J, Monkkonen J, Suhonen M, Forsberg MM. Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm. 2010;402:27–36.CrossRefPubMed
38.
go back to reference Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, Fisher K, Fossati L, Hovenkamp E, Korjamo T, Masungi C, Maubon N, Mols R, Mullertz A, Monkkonen J, O’Driscoll C, Oppers-Tiemissen HM, Ragnarsson EG, Rooseboom M, Ungell AL. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35:383–96.CrossRefPubMed Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, Fisher K, Fossati L, Hovenkamp E, Korjamo T, Masungi C, Maubon N, Mols R, Mullertz A, Monkkonen J, O’Driscoll C, Oppers-Tiemissen HM, Ragnarsson EG, Rooseboom M, Ungell AL. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35:383–96.CrossRefPubMed
39.
go back to reference Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li JB, Hidalgo IJ. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm. 2005;288:349–59.CrossRefPubMed Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li JB, Hidalgo IJ. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm. 2005;288:349–59.CrossRefPubMed
40.
go back to reference Gartzke D, Delzer J, Laplanche L, Uchida Y, Hoshi Y, Tachikawa M, Terasaki T, Sydor J, Fricker G. Genomic knockout of endogenous canine P-glycoprotein in wild-type, human P-glycoprotein and human BCRP transfected MDCKII cell lines by zinc finger nucleases. Pharm Res. 2015;32:2060–71.CrossRefPubMed Gartzke D, Delzer J, Laplanche L, Uchida Y, Hoshi Y, Tachikawa M, Terasaki T, Sydor J, Fricker G. Genomic knockout of endogenous canine P-glycoprotein in wild-type, human P-glycoprotein and human BCRP transfected MDCKII cell lines by zinc finger nucleases. Pharm Res. 2015;32:2060–71.CrossRefPubMed
41.
go back to reference Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13:1336–42.CrossRefPubMed Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996;13:1336–42.CrossRefPubMed
42.
go back to reference Wan H, Rehngren M, Giordanetto F, Bergstrom F, Tunek A. High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem. 2007;50:4606–15.CrossRefPubMed Wan H, Rehngren M, Giordanetto F, Bergstrom F, Tunek A. High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem. 2007;50:4606–15.CrossRefPubMed
43.
go back to reference Chen X, Keep RF, Liang Y, Zhu HJ, Hammarlund-Udenaes M, Hu Y, Smith DE. Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: a microdialysis study. Biochem Pharmacol. 2017;131:89–97.CrossRefPubMed Chen X, Keep RF, Liang Y, Zhu HJ, Hammarlund-Udenaes M, Hu Y, Smith DE. Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: a microdialysis study. Biochem Pharmacol. 2017;131:89–97.CrossRefPubMed
44.
go back to reference Lilja JJ, Raaska K, Neuvonen PJ. Effects of orange juice on the pharmacokinetics of atenolol. Eur J Clin Pharmacol. 2005;61:337–40.CrossRefPubMed Lilja JJ, Raaska K, Neuvonen PJ. Effects of orange juice on the pharmacokinetics of atenolol. Eur J Clin Pharmacol. 2005;61:337–40.CrossRefPubMed
45.
go back to reference Jeon H, Jang IJ, Lee S, Ohashi K, Kotegawa T, Ieiri I, Cho JY, Yoon SH, Shin SG, Yu KS, Lim KS. Apple juice greatly reduces systemic exposure to atenolol. Br J Clin Pharmacol. 2013;75:172–9.CrossRefPubMed Jeon H, Jang IJ, Lee S, Ohashi K, Kotegawa T, Ieiri I, Cho JY, Yoon SH, Shin SG, Yu KS, Lim KS. Apple juice greatly reduces systemic exposure to atenolol. Br J Clin Pharmacol. 2013;75:172–9.CrossRefPubMed
46.
go back to reference Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98:2529–39.CrossRefPubMed Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98:2529–39.CrossRefPubMed
47.
go back to reference Mimura Y, Yasujima T, Ohta K, Inoue K, Yuasa H. Atenolol transport by organic cation transporter 1 and its interference by flavonoids. Drug Metab Rev. 2015;47:263. Mimura Y, Yasujima T, Ohta K, Inoue K, Yuasa H. Atenolol transport by organic cation transporter 1 and its interference by flavonoids. Drug Metab Rev. 2015;47:263.
48.
go back to reference Ciarimboli G, Schroter R, Neugebauer U, Vollenbroker B, Gabriels G, Brzica H, Sabolic I, Pietig G, Pavenstadt H, Schlatter E, Edemir B. Kidney transplantation down-regulates expression of organic cation transporters, which translocate beta-blockers and fluoroquinolones. Mol Pharm. 2013;10:2370–80.CrossRefPubMed Ciarimboli G, Schroter R, Neugebauer U, Vollenbroker B, Gabriels G, Brzica H, Sabolic I, Pietig G, Pavenstadt H, Schlatter E, Edemir B. Kidney transplantation down-regulates expression of organic cation transporters, which translocate beta-blockers and fluoroquinolones. Mol Pharm. 2013;10:2370–80.CrossRefPubMed
49.
go back to reference Yin J, Duan HC, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos. 2015;43:1872–81.CrossRefPubMedPubMedCentral Yin J, Duan HC, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos. 2015;43:1872–81.CrossRefPubMedPubMedCentral
51.
go back to reference Westholm DE, Rumbley JN, Salo DR, Rich TP, Anderson GW. Organic anion-transporting polypeptides at the blood-brain and blood-cerebrospinal fluid barriers. Curr Top Dev Biol. 2008;80:135–70.CrossRefPubMed Westholm DE, Rumbley JN, Salo DR, Rich TP, Anderson GW. Organic anion-transporting polypeptides at the blood-brain and blood-cerebrospinal fluid barriers. Curr Top Dev Biol. 2008;80:135–70.CrossRefPubMed
52.
go back to reference Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276:41611–9.CrossRefPubMed Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276:41611–9.CrossRefPubMed
53.
go back to reference Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76:22–76.CrossRefPubMed Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76:22–76.CrossRefPubMed
54.
go back to reference Kallem R, Kulkarni CP, Patel D, Thakur M, Sinz M, Singh SP, Mahammad SS, Mandlekar S. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier. Drug Metab Lett. 2012;6:134–44.CrossRefPubMed Kallem R, Kulkarni CP, Patel D, Thakur M, Sinz M, Singh SP, Mahammad SS, Mandlekar S. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier. Drug Metab Lett. 2012;6:134–44.CrossRefPubMed
55.
go back to reference Mols R, Brouwers J, Schinkel AH, Annaert P, Augustijns P. Intestinal perfusion with mesenteric blood sampling in wild-type and knockout mice: evaluation of a novel tool in biopharmaceutical drug profiling. Drug Metab Dispos. 2009;37:1334–7.CrossRefPubMed Mols R, Brouwers J, Schinkel AH, Annaert P, Augustijns P. Intestinal perfusion with mesenteric blood sampling in wild-type and knockout mice: evaluation of a novel tool in biopharmaceutical drug profiling. Drug Metab Dispos. 2009;37:1334–7.CrossRefPubMed
56.
go back to reference Brouwers J, Mols R, Annaert P, Augustijns P. Validation of a differential in situ perfusion method with mesenteric blood sampling in rats for intestinal drug interaction profiling. Biopharm Drug Dispos. 2010;31:278–85.PubMed Brouwers J, Mols R, Annaert P, Augustijns P. Validation of a differential in situ perfusion method with mesenteric blood sampling in rats for intestinal drug interaction profiling. Biopharm Drug Dispos. 2010;31:278–85.PubMed
57.
go back to reference Doppenschmitt S, Spahn-Langguth H, Regardh CG, Langguth P. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: an approach using passive membrane permeability and affinity to P-glycoprotein. J Pharm Sci. 1999;88:1067–72.CrossRefPubMed Doppenschmitt S, Spahn-Langguth H, Regardh CG, Langguth P. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: an approach using passive membrane permeability and affinity to P-glycoprotein. J Pharm Sci. 1999;88:1067–72.CrossRefPubMed
58.
go back to reference Terao T, Hisanaga E, Sai Y, Tamai I, Tsuji A. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J Pharm Pharmacol. 1996;48:1083–9.CrossRefPubMed Terao T, Hisanaga E, Sai Y, Tamai I, Tsuji A. Active secretion of drugs from the small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. J Pharm Pharmacol. 1996;48:1083–9.CrossRefPubMed
59.
go back to reference Lilja JJ, Backman JT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atenolol. Basic Clin Pharmacol Toxicol. 2005;97:395–8.CrossRefPubMed Lilja JJ, Backman JT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atenolol. Basic Clin Pharmacol Toxicol. 2005;97:395–8.CrossRefPubMed
60.
go back to reference Saaby L, Helms HC, Brodin B. IPEC-J2 MDR1, a novel high-resistance cell line with functional expression of human P-glycoprotein (ABCB1) for drug screening studies. Mol Pharm. 2016;5(13):640–52.CrossRef Saaby L, Helms HC, Brodin B. IPEC-J2 MDR1, a novel high-resistance cell line with functional expression of human P-glycoprotein (ABCB1) for drug screening studies. Mol Pharm. 2016;5(13):640–52.CrossRef
61.
go back to reference Augustijns P, Mols R. HPLC with programmed wavelength fluorescence detection for the simultaneous determination of marker compounds of integrity and P-gp functionality in the Caco-2 intestinal absorption model. J Pharm Biomed Anal. 2004;34:971–8.CrossRefPubMed Augustijns P, Mols R. HPLC with programmed wavelength fluorescence detection for the simultaneous determination of marker compounds of integrity and P-gp functionality in the Caco-2 intestinal absorption model. J Pharm Biomed Anal. 2004;34:971–8.CrossRefPubMed
Metadata
Title
Revisiting atenolol as a low passive permeability marker
Authors
Xiaomei Chen
Tim Slättengren
Elizabeth C. M. de Lange
David E. Smith
Margareta Hammarlund-Udenaes
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2017
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-017-0078-x

Other articles of this Issue 1/2017

Fluids and Barriers of the CNS 1/2017 Go to the issue