Skip to main content
Top
Published in: European Radiology 1/2018

01-01-2018 | Urogenital

Revised PROPELLER for T2-weighted imaging of the prostate at 3 Tesla: impact on lesion detection and PI-RADS classification

Authors: Michael Meier-Schroers, Christian Marx, Frederic Carsten Schmeel, Karsten Wolter, Jürgen Gieseke, Wolfgang Block, Alois Martin Sprinkart, Frank Traeber, Winfried Willinek, Hans Heinz Schild, Guido Matthias Kukuk

Published in: European Radiology | Issue 1/2018

Login to get access

Abstract

Purpose

To evaluate revised PROPELLER (RevPROP) for T2-weighted imaging (T2WI) of the prostate as a substitute for turbo spin echo (TSE).

Materials and methods

Three-Tesla MR images of 50 patients with 55 cancer-suspicious lesions were prospectively evaluated. Findings were correlated with histopathology after MRI-guided biopsy. T2 RevPROP, T2 TSE, diffusion-weighted imaging, dynamic contrast enhancement, and MR-spectroscopy were acquired. RevPROP was compared to TSE concerning PI-RADS scores, lesion size, lesion signal-intensity, lesion contrast, artefacts, and image quality.

Results

There were 41 carcinomas in 55 cancer-suspicious lesions. RevPROP detected 41 of 41 carcinomas (100%) and 54 of 55 lesions (98.2%). TSE detected 39 of 41 carcinomas (95.1%) and 51 of 55 lesions (92.7%). RevPROP showed fewer artefacts and higher image quality (each p < 0.001). No differences were observed between single and overall PI-RADS scores based on RevPROP or TSE (p = 0.106 and p = 0.107). Lesion size was not different (p = 0.105). T2-signal intensity of lesions was higher and T2-contrast of lesions was lower on RevPROP (each p < 0.001).

Conclusion

For prostate cancer detection RevPROP is superior to TSE with respect to motion robustness, image quality and detection rates of lesions. Therefore, RevPROP might be used as a substitute for T2WI.

Key points

Revised PROPELLER can be used as a substitute for T2-weighted prostate imaging.
Revised PROPELLER detected more carcinomas and more suspicious lesions than TSE.
Revised PROPELLER showed fewer artefacts and better image quality compared to TSE.
There were no significant differences in PI-RADS scores between revised PROPELLER and TSE.
The lower T2-contrast of revised PROPELLER did not impair its diagnostic quality.
Literature
1.
go back to reference Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–9CrossRefPubMed Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–9CrossRefPubMed
2.
go back to reference Wintersperger BJ, Runge VM, Biswas J et al (2006) Brain magnetic resonance imaging at 3 Tesla using BLADE compared with standard rectilinear data sampling. Invest Radiol 41:586–592CrossRefPubMed Wintersperger BJ, Runge VM, Biswas J et al (2006) Brain magnetic resonance imaging at 3 Tesla using BLADE compared with standard rectilinear data sampling. Invest Radiol 41:586–592CrossRefPubMed
3.
go back to reference Forbes KP, Pipe JG, Karis JP, Farthing V, Heiserman JE (2003) Brain imaging in the unsedated pediatric patient: comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and singleshot fast spin-echo sequences. AJNR Am J Neuroradiol 24:794–798PubMed Forbes KP, Pipe JG, Karis JP, Farthing V, Heiserman JE (2003) Brain imaging in the unsedated pediatric patient: comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and singleshot fast spin-echo sequences. AJNR Am J Neuroradiol 24:794–798PubMed
4.
go back to reference Nyberg E, Sandhu GS, Jesberger J, Blackham KA, Hsu DP, Griswold MA, Sunshine JL (2012) Comparison of brain MR images at 1.5T using BLADE and rectilinear techniques for patients who move during data acquisition. AJNR Am J Neuroradiol 33(1):77–82CrossRefPubMed Nyberg E, Sandhu GS, Jesberger J, Blackham KA, Hsu DP, Griswold MA, Sunshine JL (2012) Comparison of brain MR images at 1.5T using BLADE and rectilinear techniques for patients who move during data acquisition. AJNR Am J Neuroradiol 33(1):77–82CrossRefPubMed
5.
go back to reference Ohgiya Y, Suyama J, Seino N, Takaya S, Kawahara M, Saiki M, Sai S, Hirose M, Gokan T (2010) MRI of the neck at 3 Tesla using the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) sequence compared with T2-weighted fast spin-echo sequence. J Magn Reson Imaging 32(5):1061–7CrossRefPubMed Ohgiya Y, Suyama J, Seino N, Takaya S, Kawahara M, Saiki M, Sai S, Hirose M, Gokan T (2010) MRI of the neck at 3 Tesla using the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) sequence compared with T2-weighted fast spin-echo sequence. J Magn Reson Imaging 32(5):1061–7CrossRefPubMed
6.
go back to reference Meier-Schroers M, Kukuk G, Homsi R, Skowasch D, Schild HH, Thomas D (2016) MRI of the lung using the PROPELLER technique: Artifact reduction, better image quality and improved nodule detection. Eur J Radiol 85(4):707–13CrossRefPubMed Meier-Schroers M, Kukuk G, Homsi R, Skowasch D, Schild HH, Thomas D (2016) MRI of the lung using the PROPELLER technique: Artifact reduction, better image quality and improved nodule detection. Eur J Radiol 85(4):707–13CrossRefPubMed
7.
go back to reference Hirokawa Y, Isoda H, Maetani YS, Arizono S, Shimada K, Togashi K (2008) Evaluation of motion correction effect and image quality with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) and parallel imaging acquisition technique in the upper abdomen. J Magn Reson Imaging 28(4):957–62CrossRefPubMed Hirokawa Y, Isoda H, Maetani YS, Arizono S, Shimada K, Togashi K (2008) Evaluation of motion correction effect and image quality with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) and parallel imaging acquisition technique in the upper abdomen. J Magn Reson Imaging 28(4):957–62CrossRefPubMed
8.
go back to reference Froehlich JM, Metens T, Chilla B, Hauser N, Klarhoefer M, Kubik-Huch RA (2012) Should less motion sensitive T2-weighted BLADE TSE replace Cartesian TSE for female pelvic MRI? Insights Imaging 3(6):611–8CrossRefPubMedPubMedCentral Froehlich JM, Metens T, Chilla B, Hauser N, Klarhoefer M, Kubik-Huch RA (2012) Should less motion sensitive T2-weighted BLADE TSE replace Cartesian TSE for female pelvic MRI? Insights Imaging 3(6):611–8CrossRefPubMedPubMedCentral
9.
go back to reference Rosenkrantz AB, Bennett GL, Doshi A, Deng FM, Babb JS, Taneja SS (2015) T2-weighted imaging of the prostate: Impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40(3):552–9CrossRefPubMed Rosenkrantz AB, Bennett GL, Doshi A, Deng FM, Babb JS, Taneja SS (2015) T2-weighted imaging of the prostate: Impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40(3):552–9CrossRefPubMed
10.
go back to reference Pipe JG, Gibbs WN, Li Z, Karis JP, Schar M, Zwart NR (2014) Revised motion estimation algorithm for PROPELLER MRI. Magn Reson Med 72(2):430–7CrossRefPubMed Pipe JG, Gibbs WN, Li Z, Karis JP, Schar M, Zwart NR (2014) Revised motion estimation algorithm for PROPELLER MRI. Magn Reson Med 72(2):430–7CrossRefPubMed
11.
go back to reference Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Fütterer JJ, European Society of Urogenital Radiology (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–57CrossRefPubMedPubMedCentral Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Fütterer JJ, European Society of Urogenital Radiology (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–57CrossRefPubMedPubMedCentral
12.
go back to reference Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, Scheenen TW, Vos PC, Huisman H, van Oort IM, Witjes JA, Heerschap A, Fütterer JJ (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66CrossRefPubMed Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, Scheenen TW, Vos PC, Huisman H, van Oort IM, Witjes JA, Heerschap A, Fütterer JJ (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66CrossRefPubMed
13.
go back to reference Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S (2016) PI-RADS Prostate Imaging-Reporting and Data System: 2015, Version 2. Eur Urol 69(1):16–40CrossRefPubMed Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S (2016) PI-RADS Prostate Imaging-Reporting and Data System: 2015, Version 2. Eur Urol 69(1):16–40CrossRefPubMed
14.
go back to reference Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, Padhani AR, Margolis D, Macura KJ, Haider MA, Cornud F, Choyke PL (2016) Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 69(1):41–9CrossRefPubMed Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, Padhani AR, Margolis D, Macura KJ, Haider MA, Cornud F, Choyke PL (2016) Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 69(1):41–9CrossRefPubMed
15.
go back to reference Schimmöller L, Quentin M, Arsov C, Hiester A, Buchbender C, Rabenalt R, Albers P, Antoch G, Blondin D (2014) MR-sequences for prostate cancer diagnostics: validation based on the PI-RADS scoring system and targeted MR-guided in-bore biopsy. Eur Radiol 24(10):2582–9CrossRefPubMed Schimmöller L, Quentin M, Arsov C, Hiester A, Buchbender C, Rabenalt R, Albers P, Antoch G, Blondin D (2014) MR-sequences for prostate cancer diagnostics: validation based on the PI-RADS scoring system and targeted MR-guided in-bore biopsy. Eur Radiol 24(10):2582–9CrossRefPubMed
16.
go back to reference Zand KR, Reinhold C, Haider MA, Nakai A, Rohoman L, Maheshwari S (2007) Artifacts and pitfalls in MR imaging of the pelvis. J Magn Reson Imaging 26(3):480–97CrossRefPubMed Zand KR, Reinhold C, Haider MA, Nakai A, Rohoman L, Maheshwari S (2007) Artifacts and pitfalls in MR imaging of the pelvis. J Magn Reson Imaging 26(3):480–97CrossRefPubMed
17.
go back to reference Wagner M, Rief M, Busch J, Scheurig C, Taupitz M, Hamm B, Franiel T (2010) Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 65(6):460–4CrossRefPubMed Wagner M, Rief M, Busch J, Scheurig C, Taupitz M, Hamm B, Franiel T (2010) Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 65(6):460–4CrossRefPubMed
18.
go back to reference Pandit P, Qi Y, King KF, Johnson GA (2011) Reduction of artifacts in T2-weighted PROPELLER in high-field preclinical imaging. Magn Reson Med 65(2):538–43CrossRefPubMed Pandit P, Qi Y, King KF, Johnson GA (2011) Reduction of artifacts in T2-weighted PROPELLER in high-field preclinical imaging. Magn Reson Med 65(2):538–43CrossRefPubMed
19.
go back to reference Roethke MC, Kuru TH, Radbruch A, Hadaschik B, Schlemmer HP (2013) Prostate magnetic resonance imaging at 3 Tesla: Is administration of hyoscine-N-butyl-bromide mandatory? World J Radiol 5(7):259–263CrossRefPubMedPubMedCentral Roethke MC, Kuru TH, Radbruch A, Hadaschik B, Schlemmer HP (2013) Prostate magnetic resonance imaging at 3 Tesla: Is administration of hyoscine-N-butyl-bromide mandatory? World J Radiol 5(7):259–263CrossRefPubMedPubMedCentral
Metadata
Title
Revised PROPELLER for T2-weighted imaging of the prostate at 3 Tesla: impact on lesion detection and PI-RADS classification
Authors
Michael Meier-Schroers
Christian Marx
Frederic Carsten Schmeel
Karsten Wolter
Jürgen Gieseke
Wolfgang Block
Alois Martin Sprinkart
Frank Traeber
Winfried Willinek
Hans Heinz Schild
Guido Matthias Kukuk
Publication date
01-01-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 1/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4949-y

Other articles of this Issue 1/2018

European Radiology 1/2018 Go to the issue