Skip to main content
Top
Published in: Endocrine Pathology 2/2009

01-06-2009

Review: The Role of Neural Crest Cells in the Endocrine System

Authors: Meghan Sara Adams, Marianne Bronner-Fraser

Published in: Endocrine Pathology | Issue 2/2009

Login to get access

Abstract

The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.
Literature
4.
go back to reference Basch ML, Bronner-Fraser M, Garcia-Castro MI. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441(7090):218–22, 2006. doi:10.1038/nature04684.PubMed Basch ML, Bronner-Fraser M, Garcia-Castro MI. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441(7090):218–22, 2006. doi:10.​1038/​nature04684.PubMed
6.
go back to reference Unsicker K. The chromaffin cell: paradigm in cell, developmental and growth factor biology. J Anat 183(Pt 2):207–21, 1993.PubMed Unsicker K. The chromaffin cell: paradigm in cell, developmental and growth factor biology. J Anat 183(Pt 2):207–21, 1993.PubMed
8.
go back to reference Le Douarin NM, Kalcheim C, Crest TN. The neural crest. Cambridge, UK: Cambridge University Press; 1999. Le Douarin NM, Kalcheim C, Crest TN. The neural crest. Cambridge, UK: Cambridge University Press; 1999.
9.
go back to reference Hall BK. The neural crest in development and evolution. New York: Springer; 1999. p. 314. Hall BK. The neural crest in development and evolution. New York: Springer; 1999. p. 314.
10.
go back to reference Le Douarin NM, Teillet MA. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 41(1):162–84, 1974. doi:10.1016/0012-1606(74)90291-7.PubMed Le Douarin NM, Teillet MA. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 41(1):162–84, 1974. doi:10.​1016/​0012-1606(74)90291-7.PubMed
11.
go back to reference Le Douarin N, Fontaine J, Le Lievre C. New studies on the neural crest origin of the avian ultimobranchial glandular cells—interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry 38(4):297–305, 1974. doi:10.1007/BF00496718.PubMed Le Douarin N, Fontaine J, Le Lievre C. New studies on the neural crest origin of the avian ultimobranchial glandular cells—interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry 38(4):297–305, 1974. doi:10.​1007/​BF00496718.PubMed
12.
go back to reference Pearse AG. The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc R Soc Lond B Biol Sci 164(996):478–87, 1966.PubMed Pearse AG. The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc R Soc Lond B Biol Sci 164(996):478–87, 1966.PubMed
14.
go back to reference Polak JM, et al. Immunocytochemical confirmation of the neural crest origin of avian calcitonin-producing cells. Histochemistry 40(3):209–14, 1974. doi:10.1007/BF00501955.PubMed Polak JM, et al. Immunocytochemical confirmation of the neural crest origin of avian calcitonin-producing cells. Histochemistry 40(3):209–14, 1974. doi:10.​1007/​BF00501955.PubMed
16.
go back to reference Kuratani S. Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Dev Growth Differ 50(Suppl 1):S189–94, 2008.PubMed Kuratani S. Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Dev Growth Differ 50(Suppl 1):S189–94, 2008.PubMed
20.
go back to reference Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9(7):557–68, 2008. doi:10.1038/nrm2428.PubMed Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9(7):557–68, 2008. doi:10.​1038/​nrm2428.PubMed
22.
go back to reference Cebra-Thomas JA, et al. Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9(3):267–77, 2007.PubMed Cebra-Thomas JA, et al. Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9(3):267–77, 2007.PubMed
25.
go back to reference Smith SH, Murray RG, Hall M. The surface structure of Leptotrichia buccalis. Can J Microbiol 40(2):90–8, 1994.PubMed Smith SH, Murray RG, Hall M. The surface structure of Leptotrichia buccalis. Can J Microbiol 40(2):90–8, 1994.PubMed
27.
go back to reference Cano A, et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83, 2000. doi:10.1038/35000025.PubMed Cano A, et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83, 2000. doi:10.​1038/​35000025.PubMed
28.
go back to reference Graveson AC, Smith MM, Hall BK. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance. Dev Biol 188(1):34–42, 1997. doi:10.1006/dbio.1997.8563.PubMed Graveson AC, Smith MM, Hall BK. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance. Dev Biol 188(1):34–42, 1997. doi:10.​1006/​dbio.​1997.​8563.PubMed
29.
go back to reference Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl):155–69, 1988.PubMed Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl):155–69, 1988.PubMed
31.
go back to reference Noden DM. Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 11(4):192–213, 1991.PubMed Noden DM. Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 11(4):192–213, 1991.PubMed
32.
go back to reference Couly GF, Coltey PM, Le Douarin NM. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114(1):1–15, 1992.PubMed Couly GF, Coltey PM, Le Douarin NM. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114(1):1–15, 1992.PubMed
33.
go back to reference Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail–chick chimeras. Development 117(2):409–29, 1993.PubMed Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail–chick chimeras. Development 117(2):409–29, 1993.PubMed
34.
go back to reference Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8(6):466–79, 2007. doi:10.1038/nrn2137.PubMed Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8(6):466–79, 2007. doi:10.​1038/​nrn2137.PubMed
35.
go back to reference Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34(1):125–54, 1975.PubMed Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34(1):125–54, 1975.PubMed
38.
go back to reference His W. Die erste Entwicklung des Hühnchens im Ei: Untersuchungen über die erste Anlage des Wirbelthierleibes; 1868. His W. Die erste Entwicklung des Hühnchens im Ei: Untersuchungen über die erste Anlage des Wirbelthierleibes; 1868.
39.
go back to reference Hörstadius S. The neural crest: its properties and derivatives in the light of experimental research. London: Oxford University Press; 1950. Hörstadius S. The neural crest: its properties and derivatives in the light of experimental research. London: Oxford University Press; 1950.
41.
go back to reference Chibon P. Nuclear labelling by tritiated thymidine of neural crest derivatives in the amphibian urodele Pleurodeles waltlii Michah. J Embryol Exp Morphol 18(3):343–58, 1967.PubMed Chibon P. Nuclear labelling by tritiated thymidine of neural crest derivatives in the amphibian urodele Pleurodeles waltlii Michah. J Embryol Exp Morphol 18(3):343–58, 1967.PubMed
43.
go back to reference Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17(5):303–13, 1969.PubMed Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17(5):303–13, 1969.PubMed
44.
go back to reference Fontaine J, Le Douarin NM. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J Embryol Exp Morphol 41:209–22, 1977.PubMed Fontaine J, Le Douarin NM. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J Embryol Exp Morphol 41:209–22, 1977.PubMed
47.
48.
go back to reference Rollhauser-ter Horst J. Neural crest replaced by gastrula ectoderm in amphibia. Effect on neurulation, CNS, gills and limbs. Anat Embryol (Berl) 160(2):203–11, 1980. doi:10.1007/BF00301861. Rollhauser-ter Horst J. Neural crest replaced by gastrula ectoderm in amphibia. Effect on neurulation, CNS, gills and limbs. Anat Embryol (Berl) 160(2):203–11, 1980. doi:10.​1007/​BF00301861.
51.
go back to reference Selleck MA, Bronner-Fraser M. Origins of the avian neural crest: the role of neural plate–epidermal interactions. Development 121(2):525–38, 1995.PubMed Selleck MA, Bronner-Fraser M. Origins of the avian neural crest: the role of neural plate–epidermal interactions. Development 121(2):525–38, 1995.PubMed
52.
go back to reference Dickinson ME, et al. Dorsalization of the neural tube by the non-neural ectoderm. Development 121(7):2099–106, 1995.PubMed Dickinson ME, et al. Dorsalization of the neural tube by the non-neural ectoderm. Development 121(7):2099–106, 1995.PubMed
54.
go back to reference Adams MS, Gammill LS, Bronner-Fraser M. Discovery of transcription factors and other candidate regulators of neural crest development. Dev Dyn 237(4):1021–33, 2008. doi:10.1002/dvdy.21513.PubMed Adams MS, Gammill LS, Bronner-Fraser M. Discovery of transcription factors and other candidate regulators of neural crest development. Dev Dyn 237(4):1021–33, 2008. doi:10.​1002/​dvdy.​21513.PubMed
56.
go back to reference Bronner-Fraser M, Fraser SE. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335(6186):161–4, 1988. doi:10.1038/335161a0.PubMed Bronner-Fraser M, Fraser SE. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335(6186):161–4, 1988. doi:10.​1038/​335161a0.PubMed
63.
64.
go back to reference Rickmann M, Fawcett JW, Keynes RJ. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–55, 1985.PubMed Rickmann M, Fawcett JW, Keynes RJ. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–55, 1985.PubMed
66.
go back to reference Sadaghiani B, Vielkind JR. Distribution and migration pathways of HNK-1-immunoreactive neural crest cells in teleost fish embryos. Development 110(1):197–209, 1990.PubMed Sadaghiani B, Vielkind JR. Distribution and migration pathways of HNK-1-immunoreactive neural crest cells in teleost fish embryos. Development 110(1):197–209, 1990.PubMed
67.
go back to reference Jeffery WR, Strickler AG, Yamamoto Y. Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431(7009):696–9, 2004. doi:10.1038/nature02975.PubMed Jeffery WR, Strickler AG, Yamamoto Y. Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431(7009):696–9, 2004. doi:10.​1038/​nature02975.PubMed
69.
70.
go back to reference Bronner-Fraser M, Sieber-Blum M, Cohen AM. Clonal analysis of the avian neural crest: migration and maturation of mixed neural crest clones injected into host chicken embryos. J Comp Neurol 193(2):423–34, 1980. doi:10.1002/cne.901930209.PubMed Bronner-Fraser M, Sieber-Blum M, Cohen AM. Clonal analysis of the avian neural crest: migration and maturation of mixed neural crest clones injected into host chicken embryos. J Comp Neurol 193(2):423–34, 1980. doi:10.​1002/​cne.​901930209.PubMed
74.
76.
go back to reference Baroffio A, Dupin E, Le Douarin NM. Common precursors for neural and mesectodermal derivatives in the cephalic neural crest. Development 112(1):301–5, 1991.PubMed Baroffio A, Dupin E, Le Douarin NM. Common precursors for neural and mesectodermal derivatives in the cephalic neural crest. Development 112(1):301–5, 1991.PubMed
79.
80.
go back to reference Lee G, et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–75, 2007. doi:10.1038/nbt1365.PubMed Lee G, et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–75, 2007. doi:10.​1038/​nbt1365.PubMed
85.
89.
go back to reference Rosai J. Basomelanocytic tumors: another nail in the neural crest coffin? In American Society of Dermatopathology Annual Meeting. 2009. Rosai J. Basomelanocytic tumors: another nail in the neural crest coffin? In American Society of Dermatopathology Annual Meeting. 2009.
90.
go back to reference Tischler AS. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 132(8):1272–84, 2008.PubMed Tischler AS. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 132(8):1272–84, 2008.PubMed
91.
go back to reference Eisenhofer G, et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 11(4):897–911, 2004. doi:10.1677/erc.1.00838.PubMed Eisenhofer G, et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 11(4):897–911, 2004. doi:10.​1677/​erc.​1.​00838.PubMed
93.
go back to reference Huynh TT, et al. Transcriptional regulation of phenylethanolamine N-methyltransferase in pheochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Ann N Y Acad Sci 1073:241–52, 2006. doi:10.1196/annals.1353.026.PubMed Huynh TT, et al. Transcriptional regulation of phenylethanolamine N-methyltransferase in pheochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Ann N Y Acad Sci 1073:241–52, 2006. doi:10.​1196/​annals.​1353.​026.PubMed
95.
go back to reference Bryant J, et al. Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95(16):1196–204, 2003.PubMedCrossRef Bryant J, et al. Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95(16):1196–204, 2003.PubMedCrossRef
98.
go back to reference Lloyd RV, et al. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol 125(1):45–54, 1986.PubMed Lloyd RV, et al. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol 125(1):45–54, 1986.PubMed
102.
go back to reference Tischler AS, et al. Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr Pathol 6(4):323–35, 1995. doi:10.1007/BF02738732.PubMed Tischler AS, et al. Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr Pathol 6(4):323–35, 1995. doi:10.​1007/​BF02738732.PubMed
107.
108.
go back to reference Hilfer SR. Cellular interactions in the genesis and maintenance of thyroid characteristics. In: Fleischmajer R, Billingham RE, editors. Epithelial–mesenchymal interactions. Baltimore: Williams and Wilkins Co.; 1968. Hilfer SR. Cellular interactions in the genesis and maintenance of thyroid characteristics. In: Fleischmajer R, Billingham RE, editors. Epithelial–mesenchymal interactions. Baltimore: Williams and Wilkins Co.; 1968.
109.
go back to reference Pearse AG, Carvalheira AF. Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature 214(5091):929–30, 1967. doi:10.1038/214929a0.PubMed Pearse AG, Carvalheira AF. Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature 214(5091):929–30, 1967. doi:10.​1038/​214929a0.PubMed
111.
go back to reference Biddinger PW, Ray M. Distribution of C cells in the normal and diseased thyroid gland. Pathol Annu 28(Pt 1):205–29, 1993.PubMed Biddinger PW, Ray M. Distribution of C cells in the normal and diseased thyroid gland. Pathol Annu 28(Pt 1):205–29, 1993.PubMed
112.
113.
go back to reference Di Lauro R, De Felice M. Thyroid gland: anatomy and development. In: DeGroot L, Jameson J, editors. Endocrinology. Philadelphia: Saunders; 2001. Di Lauro R, De Felice M. Thyroid gland: anatomy and development. In: DeGroot L, Jameson J, editors. Endocrinology. Philadelphia: Saunders; 2001.
115.
117.
go back to reference Williams ED. Diarrhoea and thyroid carcinoma. Proc R Soc Med 59(7):602–3, 1966.PubMed Williams ED. Diarrhoea and thyroid carcinoma. Proc R Soc Med 59(7):602–3, 1966.PubMed
120.
go back to reference Agoff SN, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 13(3):238–42, 2000. doi:10.1038/modpathol.3880044.PubMed Agoff SN, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 13(3):238–42, 2000. doi:10.​1038/​modpathol.​3880044.PubMed
122.
go back to reference Kalhor N, Zander DS, Liu J. TTF-1 and p63 for distinguishing pulmonary small-cell carcinoma from poorly differentiated squamous cell carcinoma in previously pap-stained cytologic material. Mod Pathol 19(8):1117–23, 2006.PubMed Kalhor N, Zander DS, Liu J. TTF-1 and p63 for distinguishing pulmonary small-cell carcinoma from poorly differentiated squamous cell carcinoma in previously pap-stained cytologic material. Mod Pathol 19(8):1117–23, 2006.PubMed
124.
go back to reference Al-Zahrani IH. The value of immunohistochemical expression of TTF-1, CK7 and CK20 in the diagnosis of primary and secondary lung carcinomas. Saudi Med J 29(7):957–61, 2008.PubMed Al-Zahrani IH. The value of immunohistochemical expression of TTF-1, CK7 and CK20 in the diagnosis of primary and secondary lung carcinomas. Saudi Med J 29(7):957–61, 2008.PubMed
125.
go back to reference Su YC, Hsu YC, Chai CY. Role of TTF-1, CK20, and CK7 immunohistochemistry for diagnosis of primary and secondary lung adenocarcinoma. Kaohsiung J Med Sci 22(1):14–19, 2006.PubMed Su YC, Hsu YC, Chai CY. Role of TTF-1, CK20, and CK7 immunohistochemistry for diagnosis of primary and secondary lung adenocarcinoma. Kaohsiung J Med Sci 22(1):14–19, 2006.PubMed
127.
go back to reference Tsao SC, et al. Use of caveolin-1, thyroid transcription factor-1, and cytokeratins 7 and 20 in discriminating between primary and secondary pulmonary adenocarcinoma from breast or colonic origin. Kaohsiung J Med Sci 23(7):325–31, 2007.PubMedCrossRef Tsao SC, et al. Use of caveolin-1, thyroid transcription factor-1, and cytokeratins 7 and 20 in discriminating between primary and secondary pulmonary adenocarcinoma from breast or colonic origin. Kaohsiung J Med Sci 23(7):325–31, 2007.PubMedCrossRef
128.
go back to reference Guazzi S, et al. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 9(11):3631–9, 1990.PubMed Guazzi S, et al. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 9(11):3631–9, 1990.PubMed
129.
go back to reference Mizuno K, Gonzalez FJ, Kimura S. Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1. Mol Cell Biol 11(10):4927–33, 1991.PubMed Mizuno K, Gonzalez FJ, Kimura S. Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1. Mol Cell Biol 11(10):4927–33, 1991.PubMed
130.
go back to reference Kikkawa F, Gonzalez FJ, Kimura S. Characterization of a thyroid-specific enhancer located 5.5 kilobase pairs upstream of the human thyroid peroxidase gene. Mol Cell Biol 10(12):6216–24, 1990.PubMed Kikkawa F, Gonzalez FJ, Kimura S. Characterization of a thyroid-specific enhancer located 5.5 kilobase pairs upstream of the human thyroid peroxidase gene. Mol Cell Biol 10(12):6216–24, 1990.PubMed
131.
go back to reference Kimura S, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–9, 1996. doi:10.1101/gad.10.1.60.PubMed Kimura S, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–9, 1996. doi:10.​1101/​gad.​10.​1.​60.PubMed
132.
133.
136.
go back to reference Lazzaro D, et al. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113(4):1093–104, 1991.PubMed Lazzaro D, et al. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113(4):1093–104, 1991.PubMed
137.
go back to reference Meunier D, Aubin J, Jeannotte L. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn 227(3):367–78, 2003. doi:10.1002/dvdy.10325.PubMed Meunier D, Aubin J, Jeannotte L. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn 227(3):367–78, 2003. doi:10.​1002/​dvdy.​10325.PubMed
138.
go back to reference Kusakabe T, Hoshi N, Kimura S. Origin of the ultimobranchial body cyst: T/ebp/Nkx2.1 expression is required for development and fusion of the ultimobranchial body to the thyroid. Dev Dyn 235(5):1300–9, 2006. doi:10.1002/dvdy.20655.PubMed Kusakabe T, Hoshi N, Kimura S. Origin of the ultimobranchial body cyst: T/ebp/Nkx2.1 expression is required for development and fusion of the ultimobranchial body to the thyroid. Dev Dyn 235(5):1300–9, 2006. doi:10.​1002/​dvdy.​20655.PubMed
139.
141.
Metadata
Title
Review: The Role of Neural Crest Cells in the Endocrine System
Authors
Meghan Sara Adams
Marianne Bronner-Fraser
Publication date
01-06-2009
Publisher
Humana Press Inc
Published in
Endocrine Pathology / Issue 2/2009
Print ISSN: 1046-3976
Electronic ISSN: 1559-0097
DOI
https://doi.org/10.1007/s12022-009-9070-6

Other articles of this Issue 2/2009

Endocrine Pathology 2/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine