Skip to main content
Top
Published in: European Journal of Drug Metabolism and Pharmacokinetics 2/2017

01-04-2017 | Review Article

Review of Pharmacokinetic Data of Different Drug Classes in Goto-Kakizaki Rats, a Non-obese Model for Type 2 Diabetes Mellitus: Case Studies and Perspectives

Authors: Harilal Patel, Poonam Giri, Nuggehally R. Srinivas

Published in: European Journal of Drug Metabolism and Pharmacokinetics | Issue 2/2017

Login to get access

Abstract

Goto-Kakizaki (GK) rats represent a unique non-obese and lean model with manifestation of type 2 diabetes (T2DM) broadly mimicking the human T2DM development. Therefore, in addition to the use of GK rats to test the efficacy of drugs, it may represent a great tool to study the influence of altered physiological process and/or organ specific pathophysiological changes (i.e., liver, kidney, etc.) on the disposition of drugs. The objectives of the review were: (a) to compile the published pharmacokinetic data of several drugs, such as cephalexin, cyclosporine, exendin-4, gliclazide, grepafloxacin, rosuvastatin, salsalate, salicylic acid, and theophylline, in GK rats relative to normal rats; and (b) critically evaluate the possible role of physiologically altered processes on the pharmacokinetics of reviewed drugs. The drugs chosen for this review provided a spread of various physiological processes and represented reasonable pool of published data set to fulfil the objectives of the review. The use of GK rats for gathering pharmacokinetic data may aid in making decisions on candidate selection and/or anticipating clinical pharmacology-related issues to the aid drug development in the diabetes area. However, given the interplay and complexities of multiple pathways governing drug disposition, caution needs to be exercised in data interpretation.
Literature
1.
2.
go back to reference George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: an emerging entity in the era of obesity. World J Diabetes. 2015;6:613–20.PubMedPubMedCentral George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: an emerging entity in the era of obesity. World J Diabetes. 2015;6:613–20.PubMedPubMedCentral
3.
go back to reference Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63–9.CrossRefPubMed Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63–9.CrossRefPubMed
4.
go back to reference Cornell S. Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Ther Clin Risk Manag. 2015;11:621–32.CrossRefPubMedPubMedCentral Cornell S. Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Ther Clin Risk Manag. 2015;11:621–32.CrossRefPubMedPubMedCentral
5.
go back to reference Buchwald H, Menchaca HJ, Michalek VN, Bertin NT. Ileal effect on blood glucose, HbA1c, and GLP-1 in Goto-Kakizaki rats. Obes Surg. 2014;24:1954–60.CrossRefPubMed Buchwald H, Menchaca HJ, Michalek VN, Bertin NT. Ileal effect on blood glucose, HbA1c, and GLP-1 in Goto-Kakizaki rats. Obes Surg. 2014;24:1954–60.CrossRefPubMed
6.
go back to reference Portha B, Giroix MH, Tourrel CC, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol. 2012;933:125–59.PubMed Portha B, Giroix MH, Tourrel CC, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol. 2012;933:125–59.PubMed
7.
go back to reference Xue B, Sukumaran S, Nie J, Jusko WJ, Dubois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One. 2011;6:e17386.CrossRefPubMedPubMedCentral Xue B, Sukumaran S, Nie J, Jusko WJ, Dubois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One. 2011;6:e17386.CrossRefPubMedPubMedCentral
8.
go back to reference Almon RR, DuBois DC, Lai W. XueB, Nie J, JuskoWJ. Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats. J Endocrinol. 2009;200:331–46.CrossRefPubMed Almon RR, DuBois DC, Lai W. XueB, Nie J, JuskoWJ. Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats. J Endocrinol. 2009;200:331–46.CrossRefPubMed
9.
go back to reference Santos MS, Santos DL, Palmeira CM, Seiça R, Moreno AJ, Oliveira CR. Brain and liver mitochondria isolated from diabetic Goto-Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes Metab Res Rev. 2001;17:223–30.CrossRefPubMed Santos MS, Santos DL, Palmeira CM, Seiça R, Moreno AJ, Oliveira CR. Brain and liver mitochondria isolated from diabetic Goto-Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes Metab Res Rev. 2001;17:223–30.CrossRefPubMed
10.
go back to reference Goto Y, Kakizaki M. The spontaneous diabetic rat: a model of non-insulin dependent diabetes mellitus. Proc Jpn Acad. 1981;57:381–4.CrossRef Goto Y, Kakizaki M. The spontaneous diabetic rat: a model of non-insulin dependent diabetes mellitus. Proc Jpn Acad. 1981;57:381–4.CrossRef
11.
go back to reference Goto Y, Suzuki K, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat). AdvExp Med Biol. 1988;246:29–31.CrossRef Goto Y, Suzuki K, Sasaki M, Toyota T. Development of diabetes in the non-obese NIDDM rat (GK rat). AdvExp Med Biol. 1988;246:29–31.CrossRef
12.
go back to reference McIntosh CHS, Pederson RA. Noninsulin-dependent animal models of diabetes mellitus. In: McNeill JH, editor. Experimental models of diabetes. Boca Raton: CRC; 1999. p. 337–98. McIntosh CHS, Pederson RA. Noninsulin-dependent animal models of diabetes mellitus. In: McNeill JH, editor. Experimental models of diabetes. Boca Raton: CRC; 1999. p. 337–98.
13.
go back to reference Watanabe K, Terada K, Sato J. Intestinal absorption of cephalexin in diabetes mellitus model rats. Eur J Pharm Sci. 2003;19:91–8.CrossRefPubMed Watanabe K, Terada K, Sato J. Intestinal absorption of cephalexin in diabetes mellitus model rats. Eur J Pharm Sci. 2003;19:91–8.CrossRefPubMed
14.
go back to reference Ogata M, Uchimura T, Iizuka Y, Murata R, Suzuki S, Toyota T, Hikichi N. Effect of non-insulin dependent diabetes on cyclosporin a disposition in Goto-Kakizaki (GK) Rats. Biol Pharm Bull. 1997;20:1026–9.CrossRefPubMed Ogata M, Uchimura T, Iizuka Y, Murata R, Suzuki S, Toyota T, Hikichi N. Effect of non-insulin dependent diabetes on cyclosporin a disposition in Goto-Kakizaki (GK) Rats. Biol Pharm Bull. 1997;20:1026–9.CrossRefPubMed
15.
go back to reference Gao W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of exendin-4 in type 2 diabetic Goto-Kakizaki rats. JPET. 2011;336:881–90.CrossRef Gao W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of exendin-4 in type 2 diabetic Goto-Kakizaki rats. JPET. 2011;336:881–90.CrossRef
16.
go back to reference Center for drug evaluation research. BYETTA® (exenatide injection) pharmacology review, US FDA, NDA 21-773, 2005. pp. 1–393. Center for drug evaluation research. BYETTA® (exenatide injection) pharmacology review, US FDA, NDA 21-773, 2005. pp. 1–393.
17.
go back to reference Mustajarvi II, Ihalmo P, Uutela P, Madetoja M, Kortejarvi H, Ketola RA, Yliperttula M. Hypoglycemic interaction of two drugsin control rats and in a rat model of diabetes. Univ Helsinki. 2013:52–54. Mustajarvi II, Ihalmo P, Uutela P, Madetoja M, Kortejarvi H, Ketola RA, Yliperttula M. Hypoglycemic interaction of two drugsin control rats and in a rat model of diabetes. Univ Helsinki. 2013:52–54.
18.
go back to reference Watanabea M, Kobayashia M, Oguraa J, Takahashib N, Yamaguchia H, Isekia K. Alteration of pharmacokinetics of grepafloxacin in type 2 diabetic rats. J Pharm Pharm Sci. 2014;17:25–33.CrossRef Watanabea M, Kobayashia M, Oguraa J, Takahashib N, Yamaguchia H, Isekia K. Alteration of pharmacokinetics of grepafloxacin in type 2 diabetic rats. J Pharm Pharm Sci. 2014;17:25–33.CrossRef
19.
go back to reference He L, Yang Y, Guo C, Yao D, Liu HH, Sheng JJ, Zhou WP, Ren J, DongLiu X, Pan GY. Opposite regulation of hepatic breast cancer resistance protein in type 1 and 2 diabetesmellitus. Eur J Pharmacol. 2014;724:185–92.CrossRefPubMed He L, Yang Y, Guo C, Yao D, Liu HH, Sheng JJ, Zhou WP, Ren J, DongLiu X, Pan GY. Opposite regulation of hepatic breast cancer resistance protein in type 1 and 2 diabetesmellitus. Eur J Pharmacol. 2014;724:185–92.CrossRefPubMed
20.
go back to reference Cao Y, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of salsalate and salicylic acid in normal and diabetic rats. Biopharm Drug Dispos. 2012;33:285–91.CrossRefPubMedPubMedCentral Cao Y, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of salsalate and salicylic acid in normal and diabetic rats. Biopharm Drug Dispos. 2012;33:285–91.CrossRefPubMedPubMedCentral
21.
go back to reference Takahashi A, Saito K, Takizawa Y, Murata R. Effect of Diabetes on theophylline disposition in the rat. Jpn J Hosp Pharm. 1999;25:603–7.CrossRef Takahashi A, Saito K, Takizawa Y, Murata R. Effect of Diabetes on theophylline disposition in the rat. Jpn J Hosp Pharm. 1999;25:603–7.CrossRef
22.
go back to reference Terada T, Sawada K, Saito H, Hashimoto Y, Inui K. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol. 1999;276:1435–41. Terada T, Sawada K, Saito H, Hashimoto Y, Inui K. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol. 1999;276:1435–41.
23.
go back to reference Ogihara H, Saito H, Shin BC, Terada T, Takenoshita S, Nagamachi Y, Inui K, Takata K. Immuno-localization of1 H/peptide co-transporter in rat digestive tract. Biochem Biophys Res Commun. 1996;220:848–52.CrossRefPubMed Ogihara H, Saito H, Shin BC, Terada T, Takenoshita S, Nagamachi Y, Inui K, Takata K. Immuno-localization of1 H/peptide co-transporter in rat digestive tract. Biochem Biophys Res Commun. 1996;220:848–52.CrossRefPubMed
24.
go back to reference Padoin C, Tod M, Perret G, Petitjean O. Analysis of the pharmacokinetic interaction between cephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob Agents Chemother. 1998;42:1463–9.PubMedPubMedCentral Padoin C, Tod M, Perret G, Petitjean O. Analysis of the pharmacokinetic interaction between cephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob Agents Chemother. 1998;42:1463–9.PubMedPubMedCentral
25.
go back to reference Hsiu SL, Hou YC, Wang YH, Tsao CW, Su SF, Chao PD. Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats. Life Sci. 2002;72:227–35.CrossRefPubMed Hsiu SL, Hou YC, Wang YH, Tsao CW, Su SF, Chao PD. Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats. Life Sci. 2002;72:227–35.CrossRefPubMed
26.
go back to reference Ogata M, Iizuka Y, Murata R, Hikichi N. Effect of streptozotocin-induced diabetes on cyclosporin A disposition in rats. Biol Pharm Bull. 1996;19:1586–90.CrossRefPubMed Ogata M, Iizuka Y, Murata R, Hikichi N. Effect of streptozotocin-induced diabetes on cyclosporin A disposition in rats. Biol Pharm Bull. 1996;19:1586–90.CrossRefPubMed
27.
go back to reference Copley K, McCowen K, Hiles R, Nielsen LL, Young A, Parkes DG. Investigation of exenatide elimination and its in vivo and in vitro degradation. Curr Drug Metab. 2006;7:367–74.CrossRefPubMed Copley K, McCowen K, Hiles R, Nielsen LL, Young A, Parkes DG. Investigation of exenatide elimination and its in vivo and in vitro degradation. Curr Drug Metab. 2006;7:367–74.CrossRefPubMed
28.
go back to reference Herings RM, de Boer A, Stricker BH, Leufkens HG, Porsius A. Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme. Lancet. 1995;345:1195–8.CrossRefPubMed Herings RM, de Boer A, Stricker BH, Leufkens HG, Porsius A. Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme. Lancet. 1995;345:1195–8.CrossRefPubMed
29.
go back to reference Yamaguchi H, Yano I, Hashimoto Y, Inui K. Secretory mechanisms of grepafloxacin andlevofloxacin in the human intestinal cell line Caco-2. J Pharmacol Exp Ther. 2000;295:360–6.PubMed Yamaguchi H, Yano I, Hashimoto Y, Inui K. Secretory mechanisms of grepafloxacin andlevofloxacin in the human intestinal cell line Caco-2. J Pharmacol Exp Ther. 2000;295:360–6.PubMed
30.
go back to reference Yamaguchi H, Yano I, Saito H, Inui K. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. J Pharmacol Exp Ther. 2002;300:1063–9.CrossRefPubMed Yamaguchi H, Yano I, Saito H, Inui K. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. J Pharmacol Exp Ther. 2002;300:1063–9.CrossRefPubMed
31.
go back to reference Nawa A, Fujita-Hamabe W, Tokuyama S. Inducible nitric oxide synthase-mediated decrease of intestinal P-glycoprotein expression under streptozotocin-induced diabetic conditions. Life Sci. 2010;86:402–9.CrossRefPubMed Nawa A, Fujita-Hamabe W, Tokuyama S. Inducible nitric oxide synthase-mediated decrease of intestinal P-glycoprotein expression under streptozotocin-induced diabetic conditions. Life Sci. 2010;86:402–9.CrossRefPubMed
32.
go back to reference Hobbs M, Parker C, Birch H, Kenworthy K. Understanding the interplay of drug transporters involved in the disposition of rosuvastatin in the isolated perfused rat liver using a physiologically-based pharmacokinetic model. Xenobiotica. 2012;42:327–38.CrossRefPubMed Hobbs M, Parker C, Birch H, Kenworthy K. Understanding the interplay of drug transporters involved in the disposition of rosuvastatin in the isolated perfused rat liver using a physiologically-based pharmacokinetic model. Xenobiotica. 2012;42:327–38.CrossRefPubMed
33.
go back to reference Huang L, Wan Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos. 2006;34:738–42.CrossRefPubMed Huang L, Wan Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos. 2006;34:738–42.CrossRefPubMed
34.
go back to reference Anderson K, Wherle L, Park M, Nelson K, Nguyen L. Salsalate, an old, inexpensive drug with potential new indications: a review of the evidence from 3 recent studies. Am Health Drug Benefits. 2014;7:231–5.PubMedPubMedCentral Anderson K, Wherle L, Park M, Nelson K, Nguyen L. Salsalate, an old, inexpensive drug with potential new indications: a review of the evidence from 3 recent studies. Am Health Drug Benefits. 2014;7:231–5.PubMedPubMedCentral
35.
go back to reference Faghihimani E, Aminorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F, Amini M. Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 2013;5:537–43.CrossRef Faghihimani E, Aminorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F, Amini M. Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 2013;5:537–43.CrossRef
36.
go back to reference Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, Shoelson SE. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2. Clin Transl Sci. 2008;1:36–43.CrossRefPubMedPubMedCentral Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, Shoelson SE. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2. Clin Transl Sci. 2008;1:36–43.CrossRefPubMedPubMedCentral
37.
go back to reference Dahlqvist R, Billing B, Miners JO, Birkett DJ. Nonlinear metabolic disposition of theophylline. Ther Drug Monit. 1984;6:290–7.CrossRefPubMed Dahlqvist R, Billing B, Miners JO, Birkett DJ. Nonlinear metabolic disposition of theophylline. Ther Drug Monit. 1984;6:290–7.CrossRefPubMed
38.
go back to reference Srinivas NR. Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives. Eur J Drug Metab Pharmacokinet. 2015;40:1–12.CrossRefPubMed Srinivas NR. Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives. Eur J Drug Metab Pharmacokinet. 2015;40:1–12.CrossRefPubMed
39.
go back to reference Marathe CS, Rayner CK, Jones KL, Horowitz M. Novel insights into the effects of diabetes on gastric motility. Expert Rev Gastroenterol Hepatol. 2016;10:581–93.CrossRefPubMed Marathe CS, Rayner CK, Jones KL, Horowitz M. Novel insights into the effects of diabetes on gastric motility. Expert Rev Gastroenterol Hepatol. 2016;10:581–93.CrossRefPubMed
40.
go back to reference Thazhath SS, Marathe CS, Wu T, Chang J, Khoo J, Kuo P, Checklin HL, Bound MJ, Rigda RS, Crouch B, Jones KL, Horowitz M, Rayner CK. The glucagon-like peptide 1 receptor agonist exenatide inhibits small intestinal motility, flow, transit, and absorption of glucose in healthy subjects and patients with type 2 diabetes: a randomized controlled trial. Diabetes. 2016;65:269–75.PubMed Thazhath SS, Marathe CS, Wu T, Chang J, Khoo J, Kuo P, Checklin HL, Bound MJ, Rigda RS, Crouch B, Jones KL, Horowitz M, Rayner CK. The glucagon-like peptide 1 receptor agonist exenatide inhibits small intestinal motility, flow, transit, and absorption of glucose in healthy subjects and patients with type 2 diabetes: a randomized controlled trial. Diabetes. 2016;65:269–75.PubMed
41.
go back to reference Boll M, Markovich D, Weber WM, Korte H, Daniel H, Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 1994;429:146–9.CrossRefPubMed Boll M, Markovich D, Weber WM, Korte H, Daniel H, Murer H. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 1994;429:146–9.CrossRefPubMed
42.
go back to reference Watanabe K, Sawano T, Endo T, Sakata M, Sato J. Studies on intestinal absorption of sulpiride: transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Biol Pharm Bull. 2002;25:1345–50.CrossRefPubMed Watanabe K, Sawano T, Endo T, Sakata M, Sato J. Studies on intestinal absorption of sulpiride: transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Biol Pharm Bull. 2002;25:1345–50.CrossRefPubMed
43.
go back to reference Moisés EC, Duarte LB, Cavalli RC, Marques MP, Lanchote V, Duarte G, da Cunha SP. Pharmacokinetics of lidocaine and its metabolite in peridural anesthesia administered to pregnant women with gestational diabetes mellitus. Eur J Clin Pharmacol. 2008;64:1189–96.CrossRefPubMed Moisés EC, Duarte LB, Cavalli RC, Marques MP, Lanchote V, Duarte G, da Cunha SP. Pharmacokinetics of lidocaine and its metabolite in peridural anesthesia administered to pregnant women with gestational diabetes mellitus. Eur J Clin Pharmacol. 2008;64:1189–96.CrossRefPubMed
44.
go back to reference Matzke GR, Frye RF, Early JJ, Straka RJ, Carson SW. Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy. 2000;20:182–90.CrossRefPubMed Matzke GR, Frye RF, Early JJ, Straka RJ, Carson SW. Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy. 2000;20:182–90.CrossRefPubMed
46.
go back to reference Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmöller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem. Pharmacol. 2013;86:666–78.CrossRefPubMed Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmöller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem. Pharmacol. 2013;86:666–78.CrossRefPubMed
47.
go back to reference Moss DM, Kwan WS, Liptrott NJ, Smith DL, Siccardi M, Khoo SH, Back DJ, Owen A. Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob Agents Chemother. 2011;55:879–87.CrossRefPubMed Moss DM, Kwan WS, Liptrott NJ, Smith DL, Siccardi M, Khoo SH, Back DJ, Owen A. Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob Agents Chemother. 2011;55:879–87.CrossRefPubMed
48.
go back to reference DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol. 2012;52:249–73.CrossRefPubMed DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol. 2012;52:249–73.CrossRefPubMed
Metadata
Title
Review of Pharmacokinetic Data of Different Drug Classes in Goto-Kakizaki Rats, a Non-obese Model for Type 2 Diabetes Mellitus: Case Studies and Perspectives
Authors
Harilal Patel
Poonam Giri
Nuggehally R. Srinivas
Publication date
01-04-2017
Publisher
Springer International Publishing
Published in
European Journal of Drug Metabolism and Pharmacokinetics / Issue 2/2017
Print ISSN: 0378-7966
Electronic ISSN: 2107-0180
DOI
https://doi.org/10.1007/s13318-016-0373-y

Other articles of this Issue 2/2017

European Journal of Drug Metabolism and Pharmacokinetics 2/2017 Go to the issue