Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 3/2015

01-05-2015 | Original Article

Reversible infantile mitochondrial diseases

Authors: Veronika Boczonadi, Boglarka Bansagi, Rita Horvath

Published in: Journal of Inherited Metabolic Disease | Issue 3/2015

Login to get access

Abstract

Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNAGlu) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.
Appendix
Available only for authorised users
Literature
go back to reference Baruffini E, Dallabona C, Invernizzi F et al (2013) MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509CrossRefPubMedCentralPubMed Baruffini E, Dallabona C, Invernizzi F et al (2013) MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509CrossRefPubMedCentralPubMed
go back to reference Boczonadi V, Smith PM, Pyle A et al (2013) Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Hum Mol Genet 22:4602–4615CrossRefPubMedCentralPubMed Boczonadi V, Smith PM, Pyle A et al (2013) Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Hum Mol Genet 22:4602–4615CrossRefPubMedCentralPubMed
go back to reference Chrzanowska-Lightowlers ZM, Horvath R, Lightowlers RN (2010) 175th ENMC International Workshop: mitochondrial protein synthesis in health and disease, 25-27th June 2010, Naarden, The Netherlands. Neuromuscul Disord 21:142–147CrossRefPubMed Chrzanowska-Lightowlers ZM, Horvath R, Lightowlers RN (2010) 175th ENMC International Workshop: mitochondrial protein synthesis in health and disease, 25-27th June 2010, Naarden, The Netherlands. Neuromuscul Disord 21:142–147CrossRefPubMed
go back to reference DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Koenigsberger R, DeVivo DC (1981) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Trans Am Neurol Assoc 106:205–207PubMed DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Koenigsberger R, DeVivo DC (1981) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Trans Am Neurol Assoc 106:205–207PubMed
go back to reference DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Papadimitriou A, Koenigsberger R, DeVivo DC (1983) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann Neurol 14:226–234CrossRefPubMed DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Papadimitriou A, Koenigsberger R, DeVivo DC (1983) Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann Neurol 14:226–234CrossRefPubMed
go back to reference Gaignard P, Gonzales E, Ackermann O et al (2013) Mitochondrial infantile liver disease due to TRMU gene mutations: three New cases. JIMD Rep 11:117–123CrossRefPubMedCentralPubMed Gaignard P, Gonzales E, Ackermann O et al (2013) Mitochondrial infantile liver disease due to TRMU gene mutations: three New cases. JIMD Rep 11:117–123CrossRefPubMedCentralPubMed
go back to reference Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087CrossRefPubMedCentralPubMed Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087CrossRefPubMedCentralPubMed
go back to reference Guan MX, Yan Q, Li X et al (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302CrossRefPubMedCentralPubMed Guan MX, Yan Q, Li X et al (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302CrossRefPubMedCentralPubMed
go back to reference Kemp JP, Smith PM, Pyle A et al (2011) Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134:183–195CrossRefPubMedCentralPubMed Kemp JP, Smith PM, Pyle A et al (2011) Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134:183–195CrossRefPubMedCentralPubMed
go back to reference Lax NZ, Gnanapavan S, Dowson SJ et al (2013) Early-onset cataracts, spastic paraparesis, and ataxia caused by a novel mitochondrial tRNAGlu (MT-TE) gene mutation causing severe complex I deficiency: a clinical, molecular, and neuropathologic study. J Neuropathol Exp Neurol 72:164–175CrossRefPubMed Lax NZ, Gnanapavan S, Dowson SJ et al (2013) Early-onset cataracts, spastic paraparesis, and ataxia caused by a novel mitochondrial tRNAGlu (MT-TE) gene mutation causing severe complex I deficiency: a clinical, molecular, and neuropathologic study. J Neuropathol Exp Neurol 72:164–175CrossRefPubMed
go back to reference Levonen AL, Lapatto R, Saksela M, Raivio KO (2000) Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms. Biochem J 347:291–295CrossRefPubMedCentralPubMed Levonen AL, Lapatto R, Saksela M, Raivio KO (2000) Human cystathionine gamma-lyase: developmental and in vitro expression of two isoforms. Biochem J 347:291–295CrossRefPubMedCentralPubMed
go back to reference Macmillan CJ, Shoubridge EA (1996) Mitochondrial DNA depletion: prevalence in a pediatric population referred for neurologic evaluation. Pediatr Neurol 14:203–210CrossRefPubMed Macmillan CJ, Shoubridge EA (1996) Mitochondrial DNA depletion: prevalence in a pediatric population referred for neurologic evaluation. Pediatr Neurol 14:203–210CrossRefPubMed
go back to reference Mancuso M, Orsucci D, Logerfo A et al (2010) Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol 257:774–781CrossRefPubMed Mancuso M, Orsucci D, Logerfo A et al (2010) Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol 257:774–781CrossRefPubMed
go back to reference Mimaki M, Hatakeyama H, Komaki H et al (2010) Reversible infantile respiratory chain deficiency: a clinical and molecular study. Ann Neurol 68:845–854CrossRefPubMed Mimaki M, Hatakeyama H, Komaki H et al (2010) Reversible infantile respiratory chain deficiency: a clinical and molecular study. Ann Neurol 68:845–854CrossRefPubMed
go back to reference Morten KJ, Ashley N, Wijburg F et al (2007) Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion 7:386–395CrossRefPubMed Morten KJ, Ashley N, Wijburg F et al (2007) Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion 7:386–395CrossRefPubMed
go back to reference Nonaka I, Koga Y, Shikura K et al (1988) Muscle pathology in cytochrome c oxidase deficiency. Acta Neuropathol 77:152–160PubMed Nonaka I, Koga Y, Shikura K et al (1988) Muscle pathology in cytochrome c oxidase deficiency. Acta Neuropathol 77:152–160PubMed
go back to reference Roodhooft AM, Van Acker KJ, Martin JJ, Ceuterick C, Scholte HR, Luyt-Houwen IE (1986) Benign mitochondrial myopathy with deficiency of NADH-CoQ reductase and cytochrome c oxidase. Neuropediatrics 17:221–226CrossRefPubMed Roodhooft AM, Van Acker KJ, Martin JJ, Ceuterick C, Scholte HR, Luyt-Houwen IE (1986) Benign mitochondrial myopathy with deficiency of NADH-CoQ reductase and cytochrome c oxidase. Neuropediatrics 17:221–226CrossRefPubMed
go back to reference Rorbach J, Yusoff AA, Tuppen H et al (2008) Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 36:3065–3074CrossRefPubMedCentralPubMed Rorbach J, Yusoff AA, Tuppen H et al (2008) Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 36:3065–3074CrossRefPubMedCentralPubMed
go back to reference Rötig A (2011) Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 1807:1198–1205CrossRefPubMed Rötig A (2011) Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 1807:1198–1205CrossRefPubMed
go back to reference Salmi H, Leonard JV, Rahman S, Lapatto R (2012) Plasma thiol status is altered in children with mitochondrial diseases. Scand J Clin Lab Invest 72:152–157CrossRefPubMed Salmi H, Leonard JV, Rahman S, Lapatto R (2012) Plasma thiol status is altered in children with mitochondrial diseases. Scand J Clin Lab Invest 72:152–157CrossRefPubMed
go back to reference Salo MK, Rapola J, Somer H, Pihko H, Koivikko M, Tritschler HJ, DiMauro S (1992) Reversible mitochondrial myopathy with cytochrome c oxidase deficiency. Arch Dis Child 67:1033–1035CrossRefPubMedCentralPubMed Salo MK, Rapola J, Somer H, Pihko H, Koivikko M, Tritschler HJ, DiMauro S (1992) Reversible mitochondrial myopathy with cytochrome c oxidase deficiency. Arch Dis Child 67:1033–1035CrossRefPubMedCentralPubMed
go back to reference Sasarman F, Antonicka H, Horvath R, Shoubridge EA (2011) The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet 20:4634–4643CrossRefPubMed Sasarman F, Antonicka H, Horvath R, Shoubridge EA (2011) The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet 20:4634–4643CrossRefPubMed
go back to reference Schara U, von Kleist-Retzow JC, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201CrossRefPubMed Schara U, von Kleist-Retzow JC, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201CrossRefPubMed
go back to reference Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010:737385CrossRefPubMedCentralPubMed Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010:737385CrossRefPubMedCentralPubMed
go back to reference Steenweg ME, Ghezzi D, Haack T et al (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain 135:1387–1394CrossRefPubMed Steenweg ME, Ghezzi D, Haack T et al (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain 135:1387–1394CrossRefPubMed
go back to reference Sturman JA, Gaull G, Raiha NC (1970) Absence of cystathionase in human fetal liver: is cystine essential? Science 169:74–76CrossRefPubMed Sturman JA, Gaull G, Raiha NC (1970) Absence of cystathionase in human fetal liver: is cystine essential? Science 169:74–76CrossRefPubMed
go back to reference Taanman JW, Hall RE, Tang C, Marusich MF, Kennaway NG, Capaldi RA (1993) Tissue distribution of cytochrome c oxidase isoforms in mammals. Characterization with monoclonal and polyclonal antibodies. Biochim Biophys Acta 1225:95–100CrossRefPubMed Taanman JW, Hall RE, Tang C, Marusich MF, Kennaway NG, Capaldi RA (1993) Tissue distribution of cytochrome c oxidase isoforms in mammals. Characterization with monoclonal and polyclonal antibodies. Biochim Biophys Acta 1225:95–100CrossRefPubMed
go back to reference Talim B, Pyle A, Griffin H et al (2013) Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation. Brain 136:e228CrossRefPubMed Talim B, Pyle A, Griffin H et al (2013) Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation. Brain 136:e228CrossRefPubMed
go back to reference Taylor RW, Pyle A, Griffin H, et al (2014) Whole exome sequencing defines the genetic basis of multiple mitochondrial respiratory chain complex deficiency. JAMA in press June 2014 Taylor RW, Pyle A, Griffin H, et al (2014) Whole exome sequencing defines the genetic basis of multiple mitochondrial respiratory chain complex deficiency. JAMA in press June 2014
go back to reference Tritschler HJ, Bonilla E, Lombes A et al (1991) Differential diagnosis of fatal and benign cytochrome c oxidase-deficient myopathies of infancy: an immunohistochemical approach. Neurology 41:300–305CrossRefPubMed Tritschler HJ, Bonilla E, Lombes A et al (1991) Differential diagnosis of fatal and benign cytochrome c oxidase-deficient myopathies of infancy: an immunohistochemical approach. Neurology 41:300–305CrossRefPubMed
go back to reference Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128CrossRefPubMed Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128CrossRefPubMed
go back to reference Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–668CrossRefPubMed Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–668CrossRefPubMed
go back to reference Viscomi C, Burlina AB, Dweikat I et al (2010) Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med 16:869–871CrossRefPubMed Viscomi C, Burlina AB, Dweikat I et al (2010) Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med 16:869–871CrossRefPubMed
go back to reference Wada H, Woo M, Nishio H et al (1996) Vascular involvement in benign infantile mitochondrial myopathy caused by reversible cytochrome c oxidase deficiency. Brain Dev 18:263–268CrossRefPubMed Wada H, Woo M, Nishio H et al (1996) Vascular involvement in benign infantile mitochondrial myopathy caused by reversible cytochrome c oxidase deficiency. Brain Dev 18:263–268CrossRefPubMed
go back to reference Zeviani M, Peterson P, Servidei S, Bonilla E, DiMauro S (1987) Benign reversible muscle cytochrome c oxidase deficiency: a second case. Neurology 37:64–67CrossRefPubMed Zeviani M, Peterson P, Servidei S, Bonilla E, DiMauro S (1987) Benign reversible muscle cytochrome c oxidase deficiency: a second case. Neurology 37:64–67CrossRefPubMed
Metadata
Title
Reversible infantile mitochondrial diseases
Authors
Veronika Boczonadi
Boglarka Bansagi
Rita Horvath
Publication date
01-05-2015
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 3/2015
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-014-9784-6

Other articles of this Issue 3/2015

Journal of Inherited Metabolic Disease 3/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine