Skip to main content
Top
Published in: Tumor Biology 10/2015

01-10-2015 | Research Article

Revealing genome-wide mRNA and microRNA expression patterns in leukemic cells highlighted “hsa-miR-2278” as a tumor suppressor for regain of chemotherapeutic imatinib response due to targeting STAT5A

Authors: Burçin Tezcanlı Kaymaz, Nur Selvi Günel, Metin Ceyhan, Vildan Bozok Çetintaş, Buket Özel, Melis Kartal Yandım, Sezgi Kıpçak, Çağdaş Aktan, Aysun Adan Gökbulut, Yusuf Baran, Buket Kosova Can

Published in: Tumor Biology | Issue 10/2015

Login to get access

Abstract

BCR-ABL oncoprotein stimulates cell proliferation and inhibits apoptosis in chronic myeloid leukemia (CML). For cure, imatinib is a widely used tyrosine kinase inhibitor, but developing chemotherapeutic resistance has to be overcome. In this study, we aimed to determine differing genome-wide microRNA (miRNA) and messenger RNA (mRNA) expression profiles in imatinib resistant (K562/IMA-3 μM) and parental cells by targeting STAT5A via small interfering RNA (siRNA) applications. After determining possible therapeutic miRNAs, we aimed to check their effects upon cell viability and proliferation, apoptosis, and find a possible miRNA::mRNA interaction to discover the molecular basis of imatinib resistance. We detected that miR-2278 and miR-1245b-3p were most significantly regulated miRNAs according to miRNome array. Upregulating miR-2278 expression resulted in the inhibition of resistant leukemic cell proliferation and induced apoptosis, whereas miR-1245b-3p did not exhibit therapeutic results. Functional analyses indicated that AKT2, STAM2, and STAT5A mRNAs were functional targets for miR-2278 as mimic transfection decreased their expressions both at transcriptional and translational level, thus highlighting miR-2278 as a tumor suppressor. This study provides new insights in discovering the mechanism of imatinib resistance due to upregulating the tumor-suppressor hsa-miR-2278 which stands for a functional therapeutic approach, inhibited leukemic cell proliferation, induced apoptosis, and regain of chemotherapeutic drug response in CML therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.PubMed Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.PubMed
2.
go back to reference Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9.CrossRefPubMed Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9.CrossRefPubMed
3.
go back to reference Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.CrossRefPubMed Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.CrossRefPubMed
4.
go back to reference Druker BJ et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.CrossRefPubMed Druker BJ et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.CrossRefPubMed
5.
go back to reference Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8:1018–29.CrossRefPubMed Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8:1018–29.CrossRefPubMed
6.
go back to reference Balabanov S, Braig M, Brümmendorf TH. Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol. 2014;11:89–99.CrossRefPubMed Balabanov S, Braig M, Brümmendorf TH. Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol. 2014;11:89–99.CrossRefPubMed
7.
go back to reference Soverini S et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114(10):2168–71.CrossRefPubMed Soverini S et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114(10):2168–71.CrossRefPubMed
9.
go back to reference Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood. 2000;95(6):2118–25.PubMed Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood. 2000;95(6):2118–25.PubMed
10.
go back to reference Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Holbl A, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood. 2011;117(12):3409–20.CrossRefPubMed Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Holbl A, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood. 2011;117(12):3409–20.CrossRefPubMed
11.
go back to reference Kosova B, Tezcanli B, Ekiz HA, Cakir Z, Selvi N, Dalmizrak A, et al. Suppression of STAT5A increases chemotherapeutic sensitivity in imatinib-resistant and imatinib-sensitive K562 cells. Leuk Lymphoma. 2010;51(10):1895–901.CrossRefPubMed Kosova B, Tezcanli B, Ekiz HA, Cakir Z, Selvi N, Dalmizrak A, et al. Suppression of STAT5A increases chemotherapeutic sensitivity in imatinib-resistant and imatinib-sensitive K562 cells. Leuk Lymphoma. 2010;51(10):1895–901.CrossRefPubMed
12.
go back to reference Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther. 2015;15(2):269–85.CrossRefPubMed Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther. 2015;15(2):269–85.CrossRefPubMed
13.
14.
go back to reference Wang H, Hu H, Zhang Q, Yang Y, Li Y, Hu Y, et al. Dynamic transcriptomes of human myeloid leukemia cells. Genomics. 2013;102:250–6.CrossRefPubMed Wang H, Hu H, Zhang Q, Yang Y, Li Y, Hu Y, et al. Dynamic transcriptomes of human myeloid leukemia cells. Genomics. 2013;102:250–6.CrossRefPubMed
15.
go back to reference Lill CM, Schilling M, Ansaloni S, Schröder J, Jaedicke M, Luessi F, et al. Assessment of microRNA-related SNP effects in the 3′ untranslated region of the IL22RA2 risk locus in multiple sclerosis. Neurogenetics. 2014;15(2):129–34.CrossRefPubMed Lill CM, Schilling M, Ansaloni S, Schröder J, Jaedicke M, Luessi F, et al. Assessment of microRNA-related SNP effects in the 3′ untranslated region of the IL22RA2 risk locus in multiple sclerosis. Neurogenetics. 2014;15(2):129–34.CrossRefPubMed
16.
go back to reference Vaz C, Ahmad HM, Bharti R, Pandey P, Kumar L, Kulshreshtha R, et al. Analysis of the microRNA transcriptome and expression of different isomiRs in human peripheral blood mononuclear cells. BMC Res Notes. 2013;28(6):390. doi:10.1186/1756-0500-6-390.CrossRef Vaz C, Ahmad HM, Bharti R, Pandey P, Kumar L, Kulshreshtha R, et al. Analysis of the microRNA transcriptome and expression of different isomiRs in human peripheral blood mononuclear cells. BMC Res Notes. 2013;28(6):390. doi:10.​1186/​1756-0500-6-390.CrossRef
17.
go back to reference Xiong Q, Yang Y, Wang H, Li J, Wang S, Li Y, et al. Characterization of miRNomes in acute and chronic myeloid leukemia cell lines. Genomics Proteomics Bioinformatics. 2014;12(2):79–91.CrossRefPubMedPubMedCentral Xiong Q, Yang Y, Wang H, Li J, Wang S, Li Y, et al. Characterization of miRNomes in acute and chronic myeloid leukemia cell lines. Genomics Proteomics Bioinformatics. 2014;12(2):79–91.CrossRefPubMedPubMedCentral
18.
go back to reference Bhutra S, Lenkala D, LaCroix B, Ye M, Huang RS. Identifying and validating a combined mRNA and MicroRNA signature in response to imatinib treatment in a chronic myeloid leukemia cell line. PLoS One. 2014;9(12), e115003.CrossRefPubMedPubMedCentral Bhutra S, Lenkala D, LaCroix B, Ye M, Huang RS. Identifying and validating a combined mRNA and MicroRNA signature in response to imatinib treatment in a chronic myeloid leukemia cell line. PLoS One. 2014;9(12), e115003.CrossRefPubMedPubMedCentral
19.
go back to reference Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica. 2014;99(3):417–29.CrossRefPubMedPubMedCentral Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica. 2014;99(3):417–29.CrossRefPubMedPubMedCentral
20.
go back to reference Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics. 2012;22(3):198–205.CrossRefPubMed Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics. 2012;22(3):198–205.CrossRefPubMed
21.
go back to reference Li Y, Yuan Y, Tao K, Wang X, Xiao Q, Huang Z, et al. Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One. 2013;8(4), e61858.CrossRefPubMedPubMedCentral Li Y, Yuan Y, Tao K, Wang X, Xiao Q, Huang Z, et al. Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One. 2013;8(4), e61858.CrossRefPubMedPubMedCentral
22.
go back to reference Kaymaz BT, Selvi N, Gündüz C, Aktan C, Dalmızrak A, Saydam G, et al. Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann Hematol. 2013;92(2):151–62.CrossRefPubMed Kaymaz BT, Selvi N, Gündüz C, Aktan C, Dalmızrak A, Saydam G, et al. Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann Hematol. 2013;92(2):151–62.CrossRefPubMed
23.
go back to reference Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18(2):254–67.CrossRefPubMed Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18(2):254–67.CrossRefPubMed
24.
go back to reference Rozovski U, Calin GA, Setoyama T, D’Abundo L, Harris DM, Li P, et al. Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells. Mol Cancer. 2013;12:50.CrossRefPubMedPubMedCentral Rozovski U, Calin GA, Setoyama T, D’Abundo L, Harris DM, Li P, et al. Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells. Mol Cancer. 2013;12:50.CrossRefPubMedPubMedCentral
25.
go back to reference Xu S, Xu Z, Liu B, Sun Q, Yang L, Wang J, et al. LIFRα-CT3 induces differentiation of a human acute myelogenous leukemia cell line HL-60 by suppressing miR-155 expression through the JAK/STAT pathway. Leuk Res. 2014;38(10):1237–44.CrossRefPubMed Xu S, Xu Z, Liu B, Sun Q, Yang L, Wang J, et al. LIFRα-CT3 induces differentiation of a human acute myelogenous leukemia cell line HL-60 by suppressing miR-155 expression through the JAK/STAT pathway. Leuk Res. 2014;38(10):1237–44.CrossRefPubMed
Metadata
Title
Revealing genome-wide mRNA and microRNA expression patterns in leukemic cells highlighted “hsa-miR-2278” as a tumor suppressor for regain of chemotherapeutic imatinib response due to targeting STAT5A
Authors
Burçin Tezcanlı Kaymaz
Nur Selvi Günel
Metin Ceyhan
Vildan Bozok Çetintaş
Buket Özel
Melis Kartal Yandım
Sezgi Kıpçak
Çağdaş Aktan
Aysun Adan Gökbulut
Yusuf Baran
Buket Kosova Can
Publication date
01-10-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 10/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3509-9

Other articles of this Issue 10/2015

Tumor Biology 10/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine