Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-01-2016 | Research article

RETRACTED ARTICLE: Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae

Authors: Sapan Kumar Sharma, Nandini Gautam, Narender Singh Atri

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Cordyceps cicadae is known as Jin Chan Hua in Traditional Chinese Medicine and known to possess different pharmacological activities. Presently, it was collected from the wild and isolated. Mycelial culture was optimized for extraction of polysaccharides under submerged culture conditions. Besides antioxidant, antibacterial activities of extracted polysaccharides were tested for first time.

Methods

Exo-polysaccharides (EPS) and intracellular polysaccharides (IPS) production was tested under different factors (medium capacity, rotation speed, pH, incubation time, temperature, carbon, nitrogen, minerals sources and carbon to nitrogen ratio) by orthogonal experiments using one-factor-at-a-time method. Monosaccharides composition of polysaccharides produced by C. cicadae was determined using high performance liquid chromatography. Antioxidant and antimicrobial activities on eight bacterial strains were checked by different standard procedures.

Results

Factors viz., medium capacity, rotation speed, incubation time, pH and temperature affected the EPS and IPS production under submerged culture conditions. EPS and IPS production was observed to vary with different carbon and nitrogen sources as well as C/N ratio. Glucose was the major component of polysaccharides (63.10 ± 4.15 %). Extracted EPS and IPS showed higher antioxidant potential with significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power and iron chelating activity. Antimicrobial activities of EPS and IPS varied among the tested bacterial strains. IPS showed slightly higher inhibition rate to all the tested bacterial strains as compared to EPS. Maximum inhibition zones of IPS (12.9 ± 0.2 mm) and EPS (12.5 ± 0.3 mm) was observed against Pseudomonas aeruginosa at 10 % con. However, both EPS and IPS fractions showed broad spectrum for all the pathogenic microbial strains tested. The MIC of both the extracts ranged from 60–100 mg/mL.

Conclusions

EPS and IPS production from submerged culture of C. cicadae with significant antioxidant and antibacterial potential can be enhanced with the combination of several factors which can be used for large scale industrial fermentation of C. cicadae.
Literature
1.
go back to reference Kobayasi Y. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans Mycol Soci Jpn. 1982;23:329–64. Kobayasi Y. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans Mycol Soci Jpn. 1982;23:329–64.
2.
go back to reference Kirk PM, Cannon P, David JC, Stalpers JA. Ainsworth and Bisby’s dictionary of the fungi. 10th ed. Wallingford, Oxon: CAB International; 2008.CrossRef Kirk PM, Cannon P, David JC, Stalpers JA. Ainsworth and Bisby’s dictionary of the fungi. 10th ed. Wallingford, Oxon: CAB International; 2008.CrossRef
3.
go back to reference Stensrud Ø, Hywel-Jones NL, Schumache T. Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly. Mycol Res. 2005;109:41–56.CrossRef Stensrud Ø, Hywel-Jones NL, Schumache T. Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly. Mycol Res. 2005;109:41–56.CrossRef
4.
go back to reference Ji DB, Ye J, Li CL, Wang YH, Zhao J, Cai S. Antiaging effect of Cordyceps sinensis extract. Phytother Res. 2009;23:116–22.CrossRef Ji DB, Ye J, Li CL, Wang YH, Zhao J, Cai S. Antiaging effect of Cordyceps sinensis extract. Phytother Res. 2009;23:116–22.CrossRef
5.
go back to reference Kiho T, Yamane A, Hui J, Usui S, Ukai S, Polysaccharides in fungi, XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull. 1996;19:294–6.CrossRef Kiho T, Yamane A, Hui J, Usui S, Ukai S, Polysaccharides in fungi, XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull. 1996;19:294–6.CrossRef
6.
go back to reference Chen YJ, Shiao MS, Lee SS, Wang SY. Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci. 1997;60:2349–59.CrossRef Chen YJ, Shiao MS, Lee SS, Wang SY. Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci. 1997;60:2349–59.CrossRef
7.
go back to reference Mizuno T. Medicinal effects and utilization of Cordyceps (Fr.) Link (Ascomycetes) and Isaria Fr. (Mitosporic fungi) Chinese caterpillar fungi, “Tochukaso,”. Int J Med Mushrooms. 1999;1:251–62.CrossRef Mizuno T. Medicinal effects and utilization of Cordyceps (Fr.) Link (Ascomycetes) and Isaria Fr. (Mitosporic fungi) Chinese caterpillar fungi, “Tochukaso,”. Int J Med Mushrooms. 1999;1:251–62.CrossRef
8.
go back to reference Kim SW, Hwang HJ, Xu CP, Na YS, Song SK, Yun JW. Influence of nutritional conditions on the mycelia growth and exopolysaccharide production in Paecilomyces sinclairii. Lett Appl Microbiol. 2002;34:389–93.CrossRef Kim SW, Hwang HJ, Xu CP, Na YS, Song SK, Yun JW. Influence of nutritional conditions on the mycelia growth and exopolysaccharide production in Paecilomyces sinclairii. Lett Appl Microbiol. 2002;34:389–93.CrossRef
9.
go back to reference Zhao CS, Yin WT, Wang JY, Zhang Y, Hong Y, Cooper R, et al. CordyMax™ Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats. J Altern Complement Med. 2002;8:309–14.CrossRef Zhao CS, Yin WT, Wang JY, Zhang Y, Hong Y, Cooper R, et al. CordyMax™ Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats. J Altern Complement Med. 2002;8:309–14.CrossRef
10.
go back to reference Ma X, Qiu DK, Xu J, Li JQ, Zeng MD. Effect of Cordyceps polysaccharide-liposome on transforming growth factor b-1 in the experimental liver fibrotic rats. Chinese J Gastroenterol. 1999;4:205–6. Ma X, Qiu DK, Xu J, Li JQ, Zeng MD. Effect of Cordyceps polysaccharide-liposome on transforming growth factor b-1 in the experimental liver fibrotic rats. Chinese J Gastroenterol. 1999;4:205–6.
11.
go back to reference Smith JE, Rowan NJ, Sullivan R. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett. 2002;24:1839–45.CrossRef Smith JE, Rowan NJ, Sullivan R. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett. 2002;24:1839–45.CrossRef
12.
go back to reference Lu C. Preventive activity of Cordyceps polysaccharides on non alcoholic steatohepatitis and their partial mechanisms of action, MSc Thesis. Anhui, PR China: Anhui Medical University; 2005. p. 1–56. Lu C. Preventive activity of Cordyceps polysaccharides on non alcoholic steatohepatitis and their partial mechanisms of action, MSc Thesis. Anhui, PR China: Anhui Medical University; 2005. p. 1–56.
13.
go back to reference Liu JL, Fei Y. Enhancement of Cordyceps taii polysaccharide and Cordyceps pruinosa polysaccharide on cellular immune function in vitro. Immunol J. 2001;17:189–91. Liu JL, Fei Y. Enhancement of Cordyceps taii polysaccharide and Cordyceps pruinosa polysaccharide on cellular immune function in vitro. Immunol J. 2001;17:189–91.
14.
go back to reference Kim HO, Yun JW. A comparative study of the production of exopolysaccharides by two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol. 2005;99:728–38.CrossRef Kim HO, Yun JW. A comparative study of the production of exopolysaccharides by two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol. 2005;99:728–38.CrossRef
15.
go back to reference Li P, Huo L, Su W, et al. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolzia zeylanica. J Serb Chem Soc. 2006;76:709–17.CrossRef Li P, Huo L, Su W, et al. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolzia zeylanica. J Serb Chem Soc. 2006;76:709–17.CrossRef
16.
go back to reference Hsu TH, Shiao LH, Hsieh C, Chang DM. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem. 2002;78:463–9.CrossRef Hsu TH, Shiao LH, Hsieh C, Chang DM. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem. 2002;78:463–9.CrossRef
17.
go back to reference Zhang DW, Wang ZL, Qi W, Zhao GY. The effects of Cordyceps sinensis phytoestrogen on estrogen deficiency-induced osteoporosis in ovariectomized rats. BMC Complement Altern Med. 2014;14:484.CrossRef Zhang DW, Wang ZL, Qi W, Zhao GY. The effects of Cordyceps sinensis phytoestrogen on estrogen deficiency-induced osteoporosis in ovariectomized rats. BMC Complement Altern Med. 2014;14:484.CrossRef
18.
go back to reference Koh JH, Kim JM, Chang UJ, Suh HJ. Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull. 2003;26:84–7.CrossRef Koh JH, Kim JM, Chang UJ, Suh HJ. Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull. 2003;26:84–7.CrossRef
19.
go back to reference Yu R, Song L, Zhao Y, Bin W, Wang L, Zhang H, et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia. 2004;75:465–72.CrossRef Yu R, Song L, Zhao Y, Bin W, Wang L, Zhang H, et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia. 2004;75:465–72.CrossRef
20.
go back to reference Liu RM, Zhang XJ, Liang GY, Yang YF, Zhong JJ, Xiao JH. Antitumor and antimetastatic activities of chloroform extract of medicinal mushroom Cordyceps taii in mouse models. BMC Complement Altern Med. 2015;15:1–13.CrossRef Liu RM, Zhang XJ, Liang GY, Yang YF, Zhong JJ, Xiao JH. Antitumor and antimetastatic activities of chloroform extract of medicinal mushroom Cordyceps taii in mouse models. BMC Complement Altern Med. 2015;15:1–13.CrossRef
21.
go back to reference Ukai S, Kiho T, Hara C, Morita M, Goto A, Imaizumi N, et al. Antitumor activity of various polysaccharides isolated from Dictyophora indusiata, Ganoderma japonicum, Cordyceps cicadae, Auricularia auricula-judae, and Auricularia species. Chem Pharm Bull. 1983;31:741–4.CrossRef Ukai S, Kiho T, Hara C, Morita M, Goto A, Imaizumi N, et al. Antitumor activity of various polysaccharides isolated from Dictyophora indusiata, Ganoderma japonicum, Cordyceps cicadae, Auricularia auricula-judae, and Auricularia species. Chem Pharm Bull. 1983;31:741–4.CrossRef
22.
go back to reference Yang JZ, Zhuo J, Chen BK, Jin LQ, Lv JX, Li LJ. Regulating effects of Paecilomyces cicadae polysaccharides on immunity of aged rats. Zhongguo Zhong Yao Za Zhi. 2008;33:292–5.PubMed Yang JZ, Zhuo J, Chen BK, Jin LQ, Lv JX, Li LJ. Regulating effects of Paecilomyces cicadae polysaccharides on immunity of aged rats. Zhongguo Zhong Yao Za Zhi. 2008;33:292–5.PubMed
23.
go back to reference Zhu R, Chen YP, Deng YY, Zheng R, Zhong YF, Wang L, et al. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. J Zhejiang Univ Sci B. 2011;12:1024–33.CrossRef Zhu R, Chen YP, Deng YY, Zheng R, Zhong YF, Wang L, et al. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model. J Zhejiang Univ Sci B. 2011;12:1024–33.CrossRef
24.
go back to reference Weng SC, Chou CJ, Lin LC, Tsai WJ, Kuo YC. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae. J Ethnopharmacol. 2002;83:79–85.CrossRef Weng SC, Chou CJ, Lin LC, Tsai WJ, Kuo YC. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae. J Ethnopharmacol. 2002;83:79–85.CrossRef
25.
go back to reference Kuo YC, Weng SC, Chou CJ, Chang TT, Tsai WJ. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae. Br J Pharmacol. 2003;140:895–906.CrossRef Kuo YC, Weng SC, Chou CJ, Chang TT, Tsai WJ. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae. Br J Pharmacol. 2003;140:895–906.CrossRef
26.
go back to reference Kim HS, Kim JY, Ryu HS, Shin BR, Kang JS, Kim HM, et al. Phenotypic and functional maturation of dendritic cells induced by polysaccharide isolated from Paecilomyces cicadae. J Med Food. 2011;14:847–56.CrossRef Kim HS, Kim JY, Ryu HS, Shin BR, Kang JS, Kim HM, et al. Phenotypic and functional maturation of dendritic cells induced by polysaccharide isolated from Paecilomyces cicadae. J Med Food. 2011;14:847–56.CrossRef
27.
go back to reference Zhu R, Zheng R, Deng Y, Chen Y, Zhang S. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-beta1-induced activation of kidney fibroblasts. Phytomedicine. 2013;21(3):372–8.CrossRef Zhu R, Zheng R, Deng Y, Chen Y, Zhang S. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-beta1-induced activation of kidney fibroblasts. Phytomedicine. 2013;21(3):372–8.CrossRef
28.
go back to reference Kim DH, Yang BK, Jeong SC, Park JB, Cho SP, et al. Production of a hineseeric, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol Lett. 2001;23:513–7.CrossRef Kim DH, Yang BK, Jeong SC, Park JB, Cho SP, et al. Production of a hineseeric, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol Lett. 2001;23:513–7.CrossRef
29.
go back to reference Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004;22:189–259.CrossRef Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004;22:189–259.CrossRef
30.
go back to reference Xu Q, Lü L, Chen S, Zheng G, Zheng J, Li Y. Isolation of Cordyceps ophioglossoides L2 from fruit body and optimization of fermentation conditions for its mycelial growth. Chinese J Chem Eng. 2009;17:278–85.CrossRef Xu Q, Lü L, Chen S, Zheng G, Zheng J, Li Y. Isolation of Cordyceps ophioglossoides L2 from fruit body and optimization of fermentation conditions for its mycelial growth. Chinese J Chem Eng. 2009;17:278–85.CrossRef
31.
go back to reference Qinqin XU, Zhenhua LIU, Yisheng SUN, Zhongjie DING, Longxian LÜ, Yongquan LI. Optimization for Production of Intracellular Polysaccharide from Cordyceps ophioglossoides L2 in submerged culture and its antioxidant activities in vitro. Biotechnoland Bioeng. 2012;20:294–301. Qinqin XU, Zhenhua LIU, Yisheng SUN, Zhongjie DING, Longxian LÜ, Yongquan LI. Optimization for Production of Intracellular Polysaccharide from Cordyceps ophioglossoides L2 in submerged culture and its antioxidant activities in vitro. Biotechnoland Bioeng. 2012;20:294–301.
32.
go back to reference Shrama SK, Gautam N, Atri NS. Optimization, composition and antioxidant activities of exo and intracellular polysaccharides in submerged culture of Cordyceps gracilis (Grev.) Durieu & Mont. Evid Based Complement Alternat Med. 2015;2015:1–8. Shrama SK, Gautam N, Atri NS. Optimization, composition and antioxidant activities of exo and intracellular polysaccharides in submerged culture of Cordyceps gracilis (Grev.) Durieu & Mont. Evid Based Complement Alternat Med. 2015;2015:1–8.
33.
go back to reference Fang QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-anoderic acid and polysaccharide. J Bioch Eng. 2002;10:61–5.CrossRef Fang QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-anoderic acid and polysaccharide. J Bioch Eng. 2002;10:61–5.CrossRef
34.
go back to reference Lung MY, Chang YC. In vitro antioxidant properties of polysaccharides from Armillaria mellea in batch fermentation. Afric J Biotechnol. 2011;10:7048–57. Lung MY, Chang YC. In vitro antioxidant properties of polysaccharides from Armillaria mellea in batch fermentation. Afric J Biotechnol. 2011;10:7048–57.
35.
go back to reference Atri NS, Sharma SK, Joshi R, Gulati A, Gulati A. Nutritional and neutraceutical composition of five wild culinary-medicinal species of genus Pleurotus (higher basidiomycetes) from northwest India. Int J Med Mushrooms. 2013;15:49–56.CrossRef Atri NS, Sharma SK, Joshi R, Gulati A, Gulati A. Nutritional and neutraceutical composition of five wild culinary-medicinal species of genus Pleurotus (higher basidiomycetes) from northwest India. Int J Med Mushrooms. 2013;15:49–56.CrossRef
36.
go back to reference Emanuel V. Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J Biomed Biotechnol. 2012;2012:1–8. Emanuel V. Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J Biomed Biotechnol. 2012;2012:1–8.
37.
go back to reference Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TTX, Lo CK, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 2003;73:2503–13.CrossRef Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TTX, Lo CK, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 2003;73:2503–13.CrossRef
38.
go back to reference Papuc C, Crivineanu M, Goran G, Nicorescu V, Durdun N. Free radicals scavenging and antioxidant activity of European mistletoe (Viscum album) and European birthwort (Aristolochia clematitis). Rev Chim. 2010;61:619–22. Papuc C, Crivineanu M, Goran G, Nicorescu V, Durdun N. Free radicals scavenging and antioxidant activity of European mistletoe (Viscum album) and European birthwort (Aristolochia clematitis). Rev Chim. 2010;61:619–22.
39.
go back to reference Oyetayo VO, Dong CH, Yao YJ. Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. Open Mycol J. 2009;3:20–6.CrossRef Oyetayo VO, Dong CH, Yao YJ. Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. Open Mycol J. 2009;3:20–6.CrossRef
40.
go back to reference Rajendran NK, Ramakrishnan J. In vitro evaluation of antimicrobial activity of crude extracts of medicinal plants against multi drug resistant pathogens. Biyoloji Bilimleri Arastirma Dergisi. 2009;2:97–101. Rajendran NK, Ramakrishnan J. In vitro evaluation of antimicrobial activity of crude extracts of medicinal plants against multi drug resistant pathogens. Biyoloji Bilimleri Arastirma Dergisi. 2009;2:97–101.
41.
go back to reference Ji YB. Pharmacological actions and applications of anitcancer traditional chinese medicines (150. Cordyceps sinensis (Berk) Sacc). Ha’erbin, China: Heilongjiang Science and Technology Press (in Chinese); 1999. p. 494-501. Ji YB. Pharmacological actions and applications of anitcancer traditional chinese medicines (150. Cordyceps sinensis (Berk) Sacc). Ha’erbin, China: Heilongjiang Science and Technology Press (in Chinese); 1999. p. 494-501.
42.
go back to reference Hsieh C, Tsai MJ, Hsu TH, Chang DM, Lo CT. Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotechnol. 2005;120:145–57.CrossRef Hsieh C, Tsai MJ, Hsu TH, Chang DM, Lo CT. Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotechnol. 2005;120:145–57.CrossRef
43.
go back to reference Dong CH, Yao YJ. Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol. 2005;99:483–92.CrossRef Dong CH, Yao YJ. Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol. 2005;99:483–92.CrossRef
44.
go back to reference Kim SY, Park SK, Park HK, Kim SW. Compositional sugar analysis of antitumor polysaccharides by high performance liquid chromatography and gas chromatography. Arch Pharm Res. 1994;17:337–42.CrossRef Kim SY, Park SK, Park HK, Kim SW. Compositional sugar analysis of antitumor polysaccharides by high performance liquid chromatography and gas chromatography. Arch Pharm Res. 1994;17:337–42.CrossRef
45.
go back to reference Yu KW, Suh HJ, Bae SH, Lee CS, Kim SH, Yoon CS. Chemical properties and physiological activities of stromata of Cordyceps militaris. J Microbiol Biotechnol. 2001;11:266–74. Yu KW, Suh HJ, Bae SH, Lee CS, Kim SH, Yoon CS. Chemical properties and physiological activities of stromata of Cordyceps militaris. J Microbiol Biotechnol. 2001;11:266–74.
46.
go back to reference Yan H, Zhu D, Xu D, Wu J, Bian X. A study on Cordyceps militaris polysaccharide purification, composition and activity analysis. Afric J Biotechnol. 2008;7:4004–9. Yan H, Zhu D, Xu D, Wu J, Bian X. A study on Cordyceps militaris polysaccharide purification, composition and activity analysis. Afric J Biotechnol. 2008;7:4004–9.
47.
go back to reference Gu YX, Song YW, Fan LQ, Yuan QS. Antioxidant activity of natural and cultured Cordyceps sp. Zhongguo Zhong Yao Za Zhi. 2007;32:1028–31.PubMed Gu YX, Song YW, Fan LQ, Yuan QS. Antioxidant activity of natural and cultured Cordyceps sp. Zhongguo Zhong Yao Za Zhi. 2007;32:1028–31.PubMed
48.
go back to reference Yuan X, Sun H, Liu Y, Shiroshita T, Kawano S, Takeshi S, et al. Anti-cancer activity comparisons of aqueous extracts from Inonotus obliquus, Cordyceps militaris and Uncaria tomentosa in vitro and in vivo. J Pharmacogn Phytochem. 2014;2:19–25. Yuan X, Sun H, Liu Y, Shiroshita T, Kawano S, Takeshi S, et al. Anti-cancer activity comparisons of aqueous extracts from Inonotus obliquus, Cordyceps militaris and Uncaria tomentosa in vitro and in vivo. J Pharmacogn Phytochem. 2014;2:19–25.
49.
go back to reference Leung PH, Shuna Z, Ping HK, Wu JY. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009;114:1251–6.CrossRef Leung PH, Shuna Z, Ping HK, Wu JY. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009;114:1251–6.CrossRef
50.
go back to reference Dong CH, Yang T, Lian T. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16:485–95.CrossRef Dong CH, Yang T, Lian T. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16:485–95.CrossRef
51.
go back to reference Vinson JA, Hao Y, Su X, Zubik L. Phenol antioxidant quantity and quality in foods: vegetables. J Agric Food Chem. 1998;46:3630–4.CrossRef Vinson JA, Hao Y, Su X, Zubik L. Phenol antioxidant quantity and quality in foods: vegetables. J Agric Food Chem. 1998;46:3630–4.CrossRef
52.
go back to reference Enayat S, Banerjee S. Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chem. 2009;116:23–8.CrossRef Enayat S, Banerjee S. Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chem. 2009;116:23–8.CrossRef
53.
go back to reference Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17:438–42.CrossRef Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch Pharm Res. 1994;17:438–42.CrossRef
54.
go back to reference Klaus A, Niksic M. Influence of the extracts isolated from Ganoderma lucidum mushroom on some microorganisms. Zbornik Matice srpske za prirodne nauke. 2007;113:219–26.CrossRef Klaus A, Niksic M. Influence of the extracts isolated from Ganoderma lucidum mushroom on some microorganisms. Zbornik Matice srpske za prirodne nauke. 2007;113:219–26.CrossRef
55.
go back to reference Keypour S, Riahi H, Moradali MF, Rafati H. Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), from Iran. Int J Med Mushrooms. 2008;10:345–9.CrossRef Keypour S, Riahi H, Moradali MF, Rafati H. Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), from Iran. Int J Med Mushrooms. 2008;10:345–9.CrossRef
56.
go back to reference Venturini ME, Rivera CS, Gonzalez C, Blanco D. Antimicrobial activity of extracts of edible wild and cultivated mushrooms against food borne bacterial strains. J Food Protect. 2008;71:1701–6.CrossRef Venturini ME, Rivera CS, Gonzalez C, Blanco D. Antimicrobial activity of extracts of edible wild and cultivated mushrooms against food borne bacterial strains. J Food Protect. 2008;71:1701–6.CrossRef
57.
go back to reference Yamac M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol. 2006;44:660–7.CrossRef Yamac M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol. 2006;44:660–7.CrossRef
58.
go back to reference Holst O, Mȕller-Loennies S. Microbial polysaccharides structures. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ, editors. Comprehensive glycoscience. From chemistry to systems biology. Amsterdam: Elsevier Inc; 2007. p. 123–79.CrossRef Holst O, Mȕller-Loennies S. Microbial polysaccharides structures. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ, editors. Comprehensive glycoscience. From chemistry to systems biology. Amsterdam: Elsevier Inc; 2007. p. 123–79.CrossRef
Metadata
Title
RETRACTED ARTICLE: Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae
Authors
Sapan Kumar Sharma
Nandini Gautam
Narender Singh Atri
Publication date
01-01-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0967-y

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue