Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 7/2017

01-07-2017 | Retinal Disorders

Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography

Authors: Kasra A. Rezaei, Qinqin Zhang, Chieh-Li Chen, Jennifer Chao, Ruikang K. Wang

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 7/2017

Login to get access

Abstract

Purpose

To image vascular features of retinitis pigmentosa (RP) using optical coherence tomography angiography (OCTA).

Methods

Patients with RP were imaged by spectral domain optical coherence tomography based angiography (OCTA). The optical microangiography (OMAG) algorithm was applied to scanned datasets to generate 3D OCTA retinal angiograms, i.e., OMAG angiograms. Motion tracking was used to minimize artifacts due to eye movement, and large field of view OMAG angiograms were achieved through a montage scanning protocol. For better visualization, depth volumes were segmented to separate the superficial retinal layers from deep outer retinal layers. The choriocapillaris and other choroidal layers were also segmented. To investigate the changes in retinal architecture, the inner segment/outer segment (IS/OS) junction to RPE layer was segmented to generate en face structural images through averaging intensity projection. Color fundus images and/or Goldmann visual fields were available for comparison of the findings to OMAG images.

Results

A total of 25 eyes (13 patients, seven women and six men) diagnosed with RP at various stages were enrolled in this study from October 2014 to January 2016 and imaged by OCTA. The resulting OMAG angiograms provided detailed visualization of retinal and choroidal vascular networks presented within the retina and choroid in a large field of view (FOV) (∼6.7 mm × 6.7 mm). All patients with a severity score greater than 3 showed abnormal microvasculature in both deep retinal and choroidal layers on OMAG images. Images of patients with a score of 4 indicating only peripheral abnormalities demonstrated relatively normal vasculature networks. Microvascular changes in the retinal and choroidal vasculature correlate with structural changes in the slab from IS/OS junction to RPE layer.

Conclusions

OCTA is useful in evaluating the microvascular changes in a large FOV encompassing the maculae of patients with RP. The large FOV of OMAG angiograms, enabled by the motion tracking, provides visualization of high definition and high resolution microvascular networks at varying stages of RP. Microvascular imaging may have significant utility in the diagnosis and monitoring of disease progression in RP patients.
Literature
1.
go back to reference Ayton LN, Guymer RH, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Exp Ophthalmol 41:396–403CrossRefPubMed Ayton LN, Guymer RH, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Exp Ophthalmol 41:396–403CrossRefPubMed
2.
go back to reference Verhoeff FH (1931) Microscopic observations in a case of retinitis pigmentosa. Arch Ophthalmol 5:392–407CrossRef Verhoeff FH (1931) Microscopic observations in a case of retinitis pigmentosa. Arch Ophthalmol 5:392–407CrossRef
3.
go back to reference Cogan DG (1951) Pathology of retinitis pigmentosa. Trans Am Acad Ophthalmol Otolaryngol 54:629–661 Cogan DG (1951) Pathology of retinitis pigmentosa. Trans Am Acad Ophthalmol Otolaryngol 54:629–661
4.
go back to reference Dhoot DS, Huo S, Yuan A et al (2012) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97:66–69CrossRefPubMed Dhoot DS, Huo S, Yuan A et al (2012) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97:66–69CrossRefPubMed
5.
go back to reference Oishi A, Otani A, Sasahara M, Kurimoto M, Nakamura H, Kohima H, Yoshimura N (2009) Retinal nerve fiber layer thickness in patients with retinitis pigmentosa. Eye 23:561–566CrossRefPubMed Oishi A, Otani A, Sasahara M, Kurimoto M, Nakamura H, Kohima H, Yoshimura N (2009) Retinal nerve fiber layer thickness in patients with retinitis pigmentosa. Eye 23:561–566CrossRefPubMed
6.
go back to reference Zhang Y, Harrison JM, San Emeterio Nateras O, Chalfin S, Duong TQ (2013) Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI. Ophthalmology 126:187–197 Zhang Y, Harrison JM, San Emeterio Nateras O, Chalfin S, Duong TQ (2013) Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI. Ophthalmology 126:187–197
7.
go back to reference Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22:607–655CrossRefPubMed Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22:607–655CrossRefPubMed
8.
go back to reference Merin S, Auerbach E (1976) Retinitis pigmentosa. Surv Ophthalmol 122:502–508 Merin S, Auerbach E (1976) Retinitis pigmentosa. Surv Ophthalmol 122:502–508
9.
go back to reference Robson AG, Saihan Z, Jenkins SA et al (2006) Functional characterization and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol 90:472–479CrossRefPubMedPubMedCentral Robson AG, Saihan Z, Jenkins SA et al (2006) Functional characterization and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol 90:472–479CrossRefPubMedPubMedCentral
10.
go back to reference Popovic P, Jarc-Vidmar M, Hawlina M (2005) Abnormal fundus autofluorescence in relation to retinal function in patients with retinitis pigmenotsa. Graefes Arch Clin Exp Ophthalmol 243:1018–1027CrossRefPubMed Popovic P, Jarc-Vidmar M, Hawlina M (2005) Abnormal fundus autofluorescence in relation to retinal function in patients with retinitis pigmenotsa. Graefes Arch Clin Exp Ophthalmol 243:1018–1027CrossRefPubMed
11.
go back to reference Zhang A, Zhang QQ, Chen C-L, Wang RK (2015) Methods and algorithms for optical coherence tomography based angiography: a review and comparison. J Biomed Opt 20(10):100901CrossRefPubMedPubMedCentral Zhang A, Zhang QQ, Chen C-L, Wang RK (2015) Methods and algorithms for optical coherence tomography based angiography: a review and comparison. J Biomed Opt 20(10):100901CrossRefPubMedPubMedCentral
12.
go back to reference Wei E, Jia Y, Tan O et al (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT Angiography. PLoS One 8(12), e81343CrossRefPubMedPubMedCentral Wei E, Jia Y, Tan O et al (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT Angiography. PLoS One 8(12), e81343CrossRefPubMedPubMedCentral
13.
go back to reference Wang RK, An L, Francis P, Wilson D (2010) Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35(9):1467–1469CrossRefPubMedPubMedCentral Wang RK, An L, Francis P, Wilson D (2010) Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35(9):1467–1469CrossRefPubMedPubMedCentral
14.
go back to reference An L, Subhush HM, Wilson DJ, Wang RK (2010) High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. J Biomed Opt 15(2):026011CrossRefPubMedPubMedCentral An L, Subhush HM, Wilson DJ, Wang RK (2010) High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. J Biomed Opt 15(2):026011CrossRefPubMedPubMedCentral
15.
go back to reference Zhang Q et al (2015) Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. J Biomed Opt 20(6):066008CrossRefPubMedPubMedCentral Zhang Q et al (2015) Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. J Biomed Opt 20(6):066008CrossRefPubMedPubMedCentral
19.
go back to reference Huang Y et al (2014) Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina 45:382–389CrossRefPubMedPubMedCentral Huang Y et al (2014) Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina 45:382–389CrossRefPubMedPubMedCentral
20.
go back to reference Thorell MR, Zhang Q, Huang Y, An L, Durbin MK, Sharma U, Stetson PF, Gregori G, Wang RK, Rosenfield PJ (2014) Swept source OCT angiography of macular telangiectasia type 2. OSLI Retina 45(5):369–380 Thorell MR, Zhang Q, Huang Y, An L, Durbin MK, Sharma U, Stetson PF, Gregori G, Wang RK, Rosenfield PJ (2014) Swept source OCT angiography of macular telangiectasia type 2. OSLI Retina 45(5):369–380
22.
go back to reference Padnick-Silver L, Kang Derwent JJ, Giuliano E, Narfstrom K, Linsenmeier RA (2006) Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration. Invest Ophthalmol Vis Sci 47(8):3683–3689CrossRefPubMed Padnick-Silver L, Kang Derwent JJ, Giuliano E, Narfstrom K, Linsenmeier RA (2006) Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration. Invest Ophthalmol Vis Sci 47(8):3683–3689CrossRefPubMed
23.
go back to reference Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751CrossRefPubMed Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751CrossRefPubMed
24.
go back to reference Penn JS, Li S, Naash MI (2000) Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(12):4007–4013PubMed Penn JS, Li S, Naash MI (2000) Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(12):4007–4013PubMed
25.
go back to reference Murakami Y, Ikeda Y, Akiyama M, Fujiwara K, Yoshida N, Nakatake S, Notomi S, Nabeshima T, Hisatomi T, Enaida H, Ishibashi T (2015) Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol 93(8):e644–e648. doi:10.1111/aos.12693 CrossRefPubMed Murakami Y, Ikeda Y, Akiyama M, Fujiwara K, Yoshida N, Nakatake S, Notomi S, Nabeshima T, Hisatomi T, Enaida H, Ishibashi T (2015) Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol 93(8):e644–e648. doi:10.​1111/​aos.​12693 CrossRefPubMed
26.
go back to reference Nakagawa S, Oishi A, Ogino K, Makiyama Y, Kurimoto M, Yoshimura N (2014) Association of retinal vessel attenuation with visual function in eyes with retinitis pigmentosa. Clin Ophthalmol 8:1487–1493. doi:10.2147/OPTH.S66326, eCollectionPubMedPubMedCentral Nakagawa S, Oishi A, Ogino K, Makiyama Y, Kurimoto M, Yoshimura N (2014) Association of retinal vessel attenuation with visual function in eyes with retinitis pigmentosa. Clin Ophthalmol 8:1487–1493. doi:10.​2147/​OPTH.​S66326, eCollectionPubMedPubMedCentral
Metadata
Title
Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography
Authors
Kasra A. Rezaei
Qinqin Zhang
Chieh-Li Chen
Jennifer Chao
Ruikang K. Wang
Publication date
01-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 7/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-017-3633-x

Other articles of this Issue 7/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 7/2017 Go to the issue