Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Short report

Retina-attached slice recording reveals light-triggered tonic GABA signaling in suprachiasmatic nucleus

Authors: Jea Kwon, Minwoo Wendy Jang, C. Justin Lee

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Light is a powerful external cue modulating the biological rhythm of internal clock neurons in the suprachiasmatic nucleus (SCN). GABA signaling in SCN is critically involved in this process. Both phasic and tonic modes of GABA signaling exist in SCN. Of the two modes, the tonic mode of GABA signaling has been implicated in light-mediated synchrony of SCN neurons. However, modulatory effects of external light on tonic GABA signalling are yet to be explored. Here, we systematically characterized electrophysiological properties of the clock neurons and determined the spatio-temporal profiles of tonic GABA current. Based on the whole-cell patch-clamp recordings from 76 SCN neurons, the cells with large tonic GABA current (>15 pA) were more frequently found in dorsal SCN. Moreover, tonic GABA current in SCN was highly correlated with the frequency of spontaneous inhibitory postsynaptic current (sIPSC), raising a possibility that tonic GABA current is due to spill-over from synaptic release. Interestingly, tonic GABA current was inversely correlated with slice-to-patch time interval, suggesting a critical role of retinal light exposure in intact brain for an induction of tonic GABA current in SCN. To test this possibility, we obtained meticulously prepared retina-attached SCN slices and successfully recorded tonic and phasic GABA signaling in SCN neurons. For the first time, we observed an early-onset, long-lasting tonic GABA current, followed by a slow-onset, short-lasting increase in the phasic GABA frequency, upon direct light-illumination of the attached retina. This result provides the first evidence that external light cue can directly trigger both tonic and phasic GABA signaling in SCN cell. In conclusion, we propose tonic GABA as the key mediator of external light in SCN.
Appendix
Available only for authorised users
Literature
1.
go back to reference LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–54.CrossRef LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–54.CrossRef
2.
go back to reference Kim DY, Choi HJ, Kim JS, Kim YS, Jeong DU, Shin HC, Kim MJ, Han H-C, Hong SK, Kim YI. Voltage-gated calcium channels play crucial roles in the glutamate-induced phase shifts of the rat suprachiasmatic circadian clock. Eur J Neurosci. 2005;21(5):1215–22.CrossRef Kim DY, Choi HJ, Kim JS, Kim YS, Jeong DU, Shin HC, Kim MJ, Han H-C, Hong SK, Kim YI. Voltage-gated calcium channels play crucial roles in the glutamate-induced phase shifts of the rat suprachiasmatic circadian clock. Eur J Neurosci. 2005;21(5):1215–22.CrossRef
3.
go back to reference Ralph MR, Menaker M. Bicuculline blocks circadian phase delays but not advances. Brain Res. 1985;325(1–2):362–5.CrossRef Ralph MR, Menaker M. Bicuculline blocks circadian phase delays but not advances. Brain Res. 1985;325(1–2):362–5.CrossRef
4.
go back to reference Ehlen JC, Paul KN. Regulation of light’s action in the mammalian circadian clock: role of the extrasynaptic gabaa receptor. Am J Physiol-Regul, Integr Comp Physiol. 2009;296(5):1606–12.CrossRef Ehlen JC, Paul KN. Regulation of light’s action in the mammalian circadian clock: role of the extrasynaptic gabaa receptor. Am J Physiol-Regul, Integr Comp Physiol. 2009;296(5):1606–12.CrossRef
5.
go back to reference Myung J, Hong S, DeWoskin D, De Schutter E, Forger DB, Takumi T. Gaba-mediated repulsive coupling between circadian clock neurons in the scn encodes seasonal time. Proc Natl Acad Sci. 2015;112(29):3920–9.CrossRef Myung J, Hong S, DeWoskin D, De Schutter E, Forger DB, Takumi T. Gaba-mediated repulsive coupling between circadian clock neurons in the scn encodes seasonal time. Proc Natl Acad Sci. 2015;112(29):3920–9.CrossRef
6.
go back to reference Albers HE, Walton JC, Gamble KL, McNeill JK IV, Hummer DL. The dynamics of gaba signaling: revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol. 2017;44:35–82.CrossRef Albers HE, Walton JC, Gamble KL, McNeill JK IV, Hummer DL. The dynamics of gaba signaling: revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol. 2017;44:35–82.CrossRef
7.
go back to reference DeWoskin D, Myung J, Belle MD, Piggins HD, Takumi T, Forger DB. Distinct roles for gaba across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci. 2015;112(29):3911–9.CrossRef DeWoskin D, Myung J, Belle MD, Piggins HD, Takumi T, Forger DB. Distinct roles for gaba across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci. 2015;112(29):3911–9.CrossRef
8.
go back to reference Bright D, Smart TG. Methods for recording and measuring tonic gabaa receptor-mediated inhibition. Front Neural Circuits. 2013;7:193.CrossRef Bright D, Smart TG. Methods for recording and measuring tonic gabaa receptor-mediated inhibition. Front Neural Circuits. 2013;7:193.CrossRef
9.
go back to reference Lee V, Maguire J. The impact of tonic gabaa receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits. 2014;8:3.CrossRef Lee V, Maguire J. The impact of tonic gabaa receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits. 2014;8:3.CrossRef
10.
go back to reference Lee S, Yoon B-E, Berglund K, Oh S-J, Park H, Shin H-S, Augustine GJ, Lee CJ. Channel-mediated tonic gaba release from glia. Science. 2010;330(6005):790–6.CrossRef Lee S, Yoon B-E, Berglund K, Oh S-J, Park H, Shin H-S, Augustine GJ, Lee CJ. Channel-mediated tonic gaba release from glia. Science. 2010;330(6005):790–6.CrossRef
11.
go back to reference Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, et al. Gaba from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. 2014;20(8):886–96.CrossRef Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, et al. Gaba from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med. 2014;20(8):886–96.CrossRef
12.
go back to reference Woo J, Min JO, Kang D-S, Kim YS, Jung GH, Park HJ, Kim S, An H, Kwon J, Kim J, et al. Control of motor coordination by astrocytic tonic gaba release through modulation of excitation/inhibition balance in cerebellum. Proc Natl Acad Sci. 2018;115(19):5004–9.CrossRef Woo J, Min JO, Kang D-S, Kim YS, Jung GH, Park HJ, Kim S, An H, Kwon J, Kim J, et al. Control of motor coordination by astrocytic tonic gaba release through modulation of excitation/inhibition balance in cerebellum. Proc Natl Acad Sci. 2018;115(19):5004–9.CrossRef
13.
go back to reference Heo JY, Nam M-H, Yoon HH, Kim J, Hwang YJ, Won W, Woo DH, Lee JA, Park H-J, Jo S, et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr Biol. 2020;30(2):276–91.CrossRef Heo JY, Nam M-H, Yoon HH, Kim J, Hwang YJ, Won W, Woo DH, Lee JA, Park H-J, Jo S, et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson’s disease. Curr Biol. 2020;30(2):276–91.CrossRef
14.
go back to reference Kwak H, Koh W, Kim S, Song K, Shin J-I, Lee JM, Lee EH, Bae JY, Ha GE, Oh J-E, et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron. 2020;108(4):691–706.CrossRef Kwak H, Koh W, Kim S, Song K, Shin J-I, Lee JM, Lee EH, Bae JY, Ha GE, Oh J-E, et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron. 2020;108(4):691–706.CrossRef
15.
go back to reference Moldavan M, Cravetchi O, Allen CN. Diurnal properties of tonic and synaptic gabaa receptor-mediated currents in suprachiasmatic nucleus neurons. J Neurophysiol. 2021;126(2):637–52.CrossRef Moldavan M, Cravetchi O, Allen CN. Diurnal properties of tonic and synaptic gabaa receptor-mediated currents in suprachiasmatic nucleus neurons. J Neurophysiol. 2021;126(2):637–52.CrossRef
16.
go back to reference Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E. Preparation of acute brain slices using an optimized n-methyl-d-glucamine protective recovery method. JoVE J Visualized Exp. 2018;132:53825. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E. Preparation of acute brain slices using an optimized n-methyl-d-glucamine protective recovery method. JoVE J Visualized Exp. 2018;132:53825.
17.
go back to reference Wong KY, Graham DM, Berson DM. The retina-attached scn slice preparation: an in vitro mammalian circadian visual system. J Biol Rhythms. 2007;22(5):400–10.CrossRef Wong KY, Graham DM, Berson DM. The retina-attached scn slice preparation: an in vitro mammalian circadian visual system. J Biol Rhythms. 2007;22(5):400–10.CrossRef
18.
go back to reference Kretz A, Marticke JK, Happold CJ, Schmeer C, Isenmann S. A primary culture technique of adult retina for regeneration studies on adult cns neurons. Nat Protoc. 2007;2(1):131–40.CrossRef Kretz A, Marticke JK, Happold CJ, Schmeer C, Isenmann S. A primary culture technique of adult retina for regeneration studies on adult cns neurons. Nat Protoc. 2007;2(1):131–40.CrossRef
19.
go back to reference Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76.CrossRef Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76.CrossRef
20.
go back to reference Drouyer E, LeSauter J, Hernandez AL, Silver R. Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus. J Comp Neurol. 2010;518(8):1249–63.PubMedPubMedCentral Drouyer E, LeSauter J, Hernandez AL, Silver R. Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus. J Comp Neurol. 2010;518(8):1249–63.PubMedPubMedCentral
21.
go back to reference Ma D, Zhao M, Xie L, Wu Q, Gou L, Zhu C, Fan Y, Wang H, Yan J, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci. 2020;23(3):456–67.CrossRef Ma D, Zhao M, Xie L, Wu Q, Gou L, Zhu C, Fan Y, Wang H, Yan J, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci. 2020;23(3):456–67.CrossRef
22.
go back to reference Ren P, Zhang H, Qiu F, Liu Y-Q, Gu H, O’Dowd DK, Zhou Q-Y, Hu W-P. Prokineticin 2 regulates the electrical activity of rat suprachiasmatic nuclei neurons. PLoS ONE. 2011;6(6):20263.CrossRef Ren P, Zhang H, Qiu F, Liu Y-Q, Gu H, O’Dowd DK, Zhou Q-Y, Hu W-P. Prokineticin 2 regulates the electrical activity of rat suprachiasmatic nuclei neurons. PLoS ONE. 2011;6(6):20263.CrossRef
23.
go back to reference Ikeno T, Williams CT, Buck CL, Barnes BM, Yan L. Clock gene expression in the suprachiasmatic nucleus of hibernating arctic ground squirrels. J Biol Rhythms. 2017;32(3):246–56.CrossRef Ikeno T, Williams CT, Buck CL, Barnes BM, Yan L. Clock gene expression in the suprachiasmatic nucleus of hibernating arctic ground squirrels. J Biol Rhythms. 2017;32(3):246–56.CrossRef
24.
go back to reference Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, Son EJ, Han HC, Hong SK, Colwell CS, et al. Excitatory actions of gaba in the suprachiasmatic nucleus. J Neurosci. 2008;28(21):5450–9.CrossRef Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, Son EJ, Han HC, Hong SK, Colwell CS, et al. Excitatory actions of gaba in the suprachiasmatic nucleus. J Neurosci. 2008;28(21):5450–9.CrossRef
25.
go back to reference Myung J, Hong S, Hatanaka F, Nakajima Y, De Schutter E, Takumi T. Period coding of bmal1 oscillators in the suprachiasmatic nucleus. J Neurosci. 2012;32(26):8900–18.CrossRef Myung J, Hong S, Hatanaka F, Nakajima Y, De Schutter E, Takumi T. Period coding of bmal1 oscillators in the suprachiasmatic nucleus. J Neurosci. 2012;32(26):8900–18.CrossRef
26.
go back to reference Hummer DL, Ehlen JC, Larkin TE, McNeill JK IV, Pamplin JR, Walker CA, Walker PV, Dhanraj DR, Albers HE. Sustained activation of gaba a receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors. Eur J Neurosci. 2015;42(2):1830–8.CrossRef Hummer DL, Ehlen JC, Larkin TE, McNeill JK IV, Pamplin JR, Walker CA, Walker PV, Dhanraj DR, Albers HE. Sustained activation of gaba a receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors. Eur J Neurosci. 2015;42(2):1830–8.CrossRef
27.
go back to reference Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of gaba a receptors. Nat Rev Neurosci. 2005;6(3):215–29.CrossRef Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of gaba a receptors. Nat Rev Neurosci. 2005;6(3):215–29.CrossRef
28.
go back to reference Brickley SG, Mody I. Extrasynaptic gabaa receptors: their function in the cns and implications for disease. Neuron. 2012;73(1):23–34.CrossRef Brickley SG, Mody I. Extrasynaptic gabaa receptors: their function in the cns and implications for disease. Neuron. 2012;73(1):23–34.CrossRef
29.
go back to reference Hannibal J, Moller M, Ottersen OP, Fahrenkrug J. Pacap and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol. 2000;418(2):147–55.CrossRef Hannibal J, Moller M, Ottersen OP, Fahrenkrug J. Pacap and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol. 2000;418(2):147–55.CrossRef
30.
go back to reference Michel S, Itri J, Colwell CS. Excitatory mechanisms in the suprachiasmatic nucleus: the role of ampa/ka glutamate receptors. J Neurophysiol. 2002;88(2):817–28.CrossRef Michel S, Itri J, Colwell CS. Excitatory mechanisms in the suprachiasmatic nucleus: the role of ampa/ka glutamate receptors. J Neurophysiol. 2002;88(2):817–28.CrossRef
31.
go back to reference Chen S-K, Badea T, Hattar S. Photoentrainment and pupillary light reflex are mediated by distinct populations of iprgcs. Nature. 2011;476(7358):92–5.CrossRef Chen S-K, Badea T, Hattar S. Photoentrainment and pupillary light reflex are mediated by distinct populations of iprgcs. Nature. 2011;476(7358):92–5.CrossRef
32.
go back to reference Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93(6):1420–35.CrossRef Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93(6):1420–35.CrossRef
33.
go back to reference Haak LL, Heller HC, Van Den Pol AN. Metabotropic glutamate receptor activation modulates kainate and serotonin calcium response in astrocytes. J Neurosci. 1997;17(5):1825–37.CrossRef Haak LL, Heller HC, Van Den Pol AN. Metabotropic glutamate receptor activation modulates kainate and serotonin calcium response in astrocytes. J Neurosci. 1997;17(5):1825–37.CrossRef
34.
go back to reference Van den Pol A, Finkbeiner SM, Cornell-Bell AH. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci. 1992;12(7):2648–64.CrossRef Van den Pol A, Finkbeiner SM, Cornell-Bell AH. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci. 1992;12(7):2648–64.CrossRef
35.
go back to reference Park D, Lee S, Jun K, Hong Y-M, Kim YI, Shin H-S, et al. Translation of clock rhythmicity into neural firing in suprachiasmatic nucleus requires mglur-plcβ4 signaling. Nat Neurosci. 2003;6(4):337–8.CrossRef Park D, Lee S, Jun K, Hong Y-M, Kim YI, Shin H-S, et al. Translation of clock rhythmicity into neural firing in suprachiasmatic nucleus requires mglur-plcβ4 signaling. Nat Neurosci. 2003;6(4):337–8.CrossRef
36.
go back to reference Moore RY, Speh JC. Gaba is the principal neurotransmitter of the circadian system. Neurosci Lett. 1993;150(1):112–6.CrossRef Moore RY, Speh JC. Gaba is the principal neurotransmitter of the circadian system. Neurosci Lett. 1993;150(1):112–6.CrossRef
37.
go back to reference Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1–2):172–91.CrossRef Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1–2):172–91.CrossRef
38.
go back to reference Moldavan M, Cravetchi O, Allen CN. Gaba transporters regulate tonic and synaptic gabaa receptor-mediated currents in the suprachiasmatic nucleus neurons. J Neurophysiol. 2017;118(6):3092–106.CrossRef Moldavan M, Cravetchi O, Allen CN. Gaba transporters regulate tonic and synaptic gabaa receptor-mediated currents in the suprachiasmatic nucleus neurons. J Neurophysiol. 2017;118(6):3092–106.CrossRef
Metadata
Title
Retina-attached slice recording reveals light-triggered tonic GABA signaling in suprachiasmatic nucleus
Authors
Jea Kwon
Minwoo Wendy Jang
C. Justin Lee
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00881-9

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue