Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves

Authors: Suzanne Wendelken, David M. Page, Tyler Davis, Heather A. C. Wark, David T. Kluger, Christopher Duncan, David J. Warren, Douglas T. Hutchinson, Gregory A. Clark

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Despite advances in sophisticated robotic hands, intuitive control of and sensory feedback from these prostheses has been limited to only 3-degrees-of-freedom (DOF) with 2 sensory percepts in closed-loop control. A Utah Slanted Electrode Array (USEA) has been used in the past to provide up to 81 sensory percepts for human amputees. Here, we report on the advanced capabilities of multiple USEAs implanted in the residual peripheral arm nerves of human amputees for restoring control of 5 DOF and sensation of up to 131 proprioceptive and cutaneous hand sensory percepts. We also demonstrate that USEA-restored sensory percepts provide a useful source of feedback during closed-loop virtual prosthetic hand control.

Methods

Two 100-channel USEAs were implanted for 4–5 weeks, one each in the median and ulnar arm nerves of two human subjects with prior long-duration upper-arm amputations. Intended finger and wrist positions were decoded from neuronal firing patterns via a modified Kalman filter, allowing subjects to control many movements of a virtual prosthetic hand. Additionally, USEA microstimulation was used to evoke numerous sensory percepts spanning the phantom hand. Closed-loop control was achieved by stimulating via an electrode of the ulnar-nerve USEA while recording and decoding movement via the median-nerve USEA.

Results

Subjects controlled up to 12 degrees-of-freedom during informal, ‘freeform’ online movement decode sessions, and experienced up to 131 USEA-evoked proprioceptive and cutaneous sensations spanning the phantom hand. Independent control was achieved for a 5-DOF real-time decode that included flexion/extension of the thumb, index, middle, and ring fingers, and the wrist. Proportional control was achieved for a 4-DOF real-time decode. One subject used a USEA-evoked hand sensation as feedback to complete a 1-DOF closed-loop virtual-hand movement task. There were no observed long-term functional deficits due to the USEA implants.

Conclusions

Implantation of high-channel-count USEAs enables multi-degree-of-freedom control of virtual prosthetic hand movement and restoration of a rich selection of both proprioceptive and cutaneous sensory percepts spanning the hand during the short 4–5 week post-implant period. Future USEA use in longer-term implants and in closed-loop may enable restoration of many of the capabilities of an intact hand while contributing to a meaningful embodiment of the prosthesis.
Literature
1.
go back to reference Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain. 2011;134(3):747–58.CrossRefPubMedPubMedCentral Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain. 2011;134(3):747–58.CrossRefPubMedPubMedCentral
2.
go back to reference Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–86.CrossRefPubMed Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci. 1996;263(1369):377–86.CrossRefPubMed
3.
go back to reference Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res. 1974;Fall:247–58. Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res. 1974;Fall:247–58.
4.
go back to reference Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg. 2004;29(4):605–15.CrossRef Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg. 2004;29(4):605–15.CrossRef
5.
go back to reference Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol. 2005;93(5):2625–33.CrossRefPubMed Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol. 2005;93(5):2625–33.CrossRefPubMed
6.
go back to reference Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468–72.CrossRefPubMed Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468–72.CrossRefPubMed
7.
go back to reference Rossini PM, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121(5):777–83.CrossRefPubMed Rossini PM, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121(5):777–83.CrossRefPubMed
8.
go back to reference Micera S, et al. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J NeuroEngineering Rehabil. 2011;8:53.CrossRef Micera S, et al. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J NeuroEngineering Rehabil. 2011;8:53.CrossRef
9.
go back to reference Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2011;19(5):483–9.CrossRef Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2011;19(5):483–9.CrossRef
10.
go back to reference Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.CrossRefPubMedPubMedCentral Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.CrossRefPubMedPubMedCentral
11.
go back to reference Warwick K, Gasson M, Hutt B, et al. The application of implant technology for cybernetic systems. Arch Neurol. 2003;60(10):1369–73.CrossRefPubMed Warwick K, Gasson M, Hutt B, et al. The application of implant technology for cybernetic systems. Arch Neurol. 2003;60(10):1369–73.CrossRefPubMed
12.
go back to reference Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K. Invasive neural prosthesis for neural signal detection and nerve stimulation. Int J Adapt Control Signal Process. 2005;19(5):365–75. Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K. Invasive neural prosthesis for neural signal detection and nerve stimulation. Int J Adapt Control Signal Process. 2005;19(5):365–75.
13.
go back to reference Raspopovic S, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19.CrossRefPubMed Raspopovic S, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19.CrossRefPubMed
14.
go back to reference Davis TS, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13(3):036001.CrossRefPubMed Davis TS, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13(3):036001.CrossRefPubMed
15.
go back to reference Clark GA, et al. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2014. p. 1977–80.CrossRef Clark GA, et al. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2014. p. 1977–80.CrossRef
16.
go back to reference Page DM, et al. Restoration of sensory and motor hand function via two Utah Slanted Electrode Arrays (USEAs) in residual arm nerves after prior hand amputation. In: 2014 annual meeting of the Society for Neuroscience (SFN). Washington, DC; 2014. p. 636.19. Page DM, et al. Restoration of sensory and motor hand function via two Utah Slanted Electrode Arrays (USEAs) in residual arm nerves after prior hand amputation. In: 2014 annual meeting of the Society for Neuroscience (SFN). Washington, DC; 2014. p. 636.19.
17.
go back to reference Wendelken S, et al. Partial restoration of sensorimoor function after hand amputation using multiple elecrode arrays. In: 2014 annual meeting of the Biomedical Engineering Society (BMES); 2014. p. 132. Wendelken S, et al. Partial restoration of sensorimoor function after hand amputation using multiple elecrode arrays. In: 2014 annual meeting of the Biomedical Engineering Society (BMES); 2014. p. 132.
18.
go back to reference Wendelken S et al. Using multiple Utah Slanted Electrode Arrays (USEAs) to control 5 degrees-of-freedom of a virtual prosthetic hand and provide sensations in the phantom hand for a human, transradial amputee. In: 2015 annual meeting of the Society for Neuroscience (SFN). Chicago, Ill; 2015. Wendelken S et al. Using multiple Utah Slanted Electrode Arrays (USEAs) to control 5 degrees-of-freedom of a virtual prosthetic hand and provide sensations in the phantom hand for a human, transradial amputee. In: 2015 annual meeting of the Society for Neuroscience (SFN). Chicago, Ill; 2015.
19.
go back to reference Warren DJ, et al. Recording and decoding for neural prostheses. Proc IEEE. 2016;104(2):374–91.CrossRef Warren DJ, et al. Recording and decoding for neural prostheses. Proc IEEE. 2016;104(2):374–91.CrossRef
20.
go back to reference Clark GA, et al. Restoring cutaneous and proprioceptive somatosensory function with nerve stimulation after hand amputations. In: 2016 4th International Conference on Medical Bionics hosted by the Bionics Institute; Brisbane; 2016. Clark GA, et al. Restoring cutaneous and proprioceptive somatosensory function with nerve stimulation after hand amputations. In: 2016 4th International Conference on Medical Bionics hosted by the Bionics Institute; Brisbane; 2016.
21.
go back to reference Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an Array of varying-length microelectrodes. J Neurophysiol. 2001;85(4):1585–94.PubMed Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an Array of varying-length microelectrodes. J Neurophysiol. 2001;85(4):1585–94.PubMed
22.
go back to reference G. A. Clark, D. J. Warren, N. M. Ledbetter, M. Lloyd, and R. A. Normann, “Microelectrode array system with integrated reference microelectrodes to reduce detected electrical noise and improve selectivity of activation,” US8359083 B2, 2013. G. A. Clark, D. J. Warren, N. M. Ledbetter, M. Lloyd, and R. A. Normann, “Microelectrode array system with integrated reference microelectrodes to reduce detected electrical noise and improve selectivity of activation,” US8359083 B2, 2013.
23.
24.
go back to reference Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992;20(4):413–22.CrossRefPubMed Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992;20(4):413–22.CrossRefPubMed
25.
go back to reference Spataro L, et al. Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Exp Neurol. 2005;194(2):289–300.CrossRefPubMed Spataro L, et al. Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Exp Neurol. 2005;194(2):289–300.CrossRefPubMed
26.
go back to reference Zhong Y, Bellamkonda RV. Dexamethasone coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 2007;1148:15–27.CrossRefPubMedPubMedCentral Zhong Y, Bellamkonda RV. Dexamethasone coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 2007;1148:15–27.CrossRefPubMedPubMedCentral
27.
go back to reference Christensen MB, Wark HAC, Hutchinson DT. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays. Biomaterials. 2016;77:235–42.CrossRefPubMed Christensen MB, Wark HAC, Hutchinson DT. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays. Biomaterials. 2016;77:235–42.CrossRefPubMed
28.
go back to reference Gunalan K, Warren DJ, Perry JD, Normann RA, Clark GA. An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays. J Neurosci Methods. 2009;178(2):263–9.CrossRefPubMed Gunalan K, Warren DJ, Perry JD, Normann RA, Clark GA. An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays. J Neurosci Methods. 2009;178(2):263–9.CrossRefPubMed
29.
go back to reference Davoodi R, Urata C, Hauschild M, Khachani M, Loeb GE. Model-based development of neural prostheses for movement. IEEE Trans Biomed Eng. 2007;54(11):1909–18.CrossRefPubMed Davoodi R, Urata C, Hauschild M, Khachani M, Loeb GE. Model-based development of neural prostheses for movement. IEEE Trans Biomed Eng. 2007;54(11):1909–18.CrossRefPubMed
30.
go back to reference Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, Donoghue JP. Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans Biomed Eng. 2004;51(6):933–42.CrossRefPubMed Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, Donoghue JP. Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans Biomed Eng. 2004;51(6):933–42.CrossRefPubMed
32.
34.
go back to reference Gray H. IX. Neurology. 6b. The anterior divisions. Gray, Henry. 1918. Anatomy of the human body. In: Anatomty of the human body. Twentieth ed. Lea & Febiger: Philadelphia; 1918. Gray H. IX. Neurology. 6b. The anterior divisions. Gray, Henry. 1918. Anatomy of the human body. In: Anatomty of the human body. Twentieth ed. Lea & Febiger: Philadelphia; 1918.
35.
go back to reference Kagan ZB, et al. Linear methods for reducing noise in peripheral nerve motor decodes. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Orlando; 2016. Kagan ZB, et al. Linear methods for reducing noise in peripheral nerve motor decodes. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Orlando; 2016.
36.
go back to reference Cipriani C, Segil JL, Birdwell JA, Weir RF. Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans Neural Syst Rehabil Eng. 2014;99:1–1. Cipriani C, Segil JL, Birdwell JA, Weir RF. Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans Neural Syst Rehabil Eng. 2014;99:1–1.
37.
go back to reference Nieveen JG, et al. Channel selection of neural and Electromyographic signals for decoding of motor intent. In: 2017 Myoelectric control (MEC) symposium of the Institute of Biomedical Engineering; Fredericton; 2017. Nieveen JG, et al. Channel selection of neural and Electromyographic signals for decoding of motor intent. In: 2017 Myoelectric control (MEC) symposium of the Institute of Biomedical Engineering; Fredericton; 2017.
38.
go back to reference Zhang P, Li N. The importance of affective quality. Commun ACM. 2005;48(9):105–8.CrossRef Zhang P, Li N. The importance of affective quality. Commun ACM. 2005;48(9):105–8.CrossRef
39.
go back to reference Saal HP, Bensmaia SJ. Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 2014;37(12):689–97.CrossRefPubMed Saal HP, Bensmaia SJ. Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 2014;37(12):689–97.CrossRefPubMed
40.
go back to reference Perruchoud D, Pisotta I, Carda S, Murray MM, Ionta S. Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces. J Neural Eng. 2016;13(4):041001.CrossRefPubMed Perruchoud D, Pisotta I, Carda S, Murray MM, Ionta S. Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces. J Neural Eng. 2016;13(4):041001.CrossRefPubMed
41.
go back to reference Gescheider G. Chapter 3. The classical psychophysical methods. In: Psychophys. Fundam. 3rd Ed Mahwah Lawrence Erlbaum Assoc.; 1997. Gescheider G. Chapter 3. The classical psychophysical methods. In: Psychophys. Fundam. 3rd Ed Mahwah Lawrence Erlbaum Assoc.; 1997.
42.
go back to reference Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6(257):257re6.CrossRefPubMed Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6(257):257re6.CrossRefPubMed
43.
go back to reference Dietrich C, et al. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett. 2012;507(2):97–100.CrossRefPubMed Dietrich C, et al. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett. 2012;507(2):97–100.CrossRefPubMed
44.
go back to reference Schofield JS, Evans KR, Carey JP, Hebert JS. Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev Med Devices. 2014;11(5):499–511.CrossRefPubMed Schofield JS, Evans KR, Carey JP, Hebert JS. Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev Med Devices. 2014;11(5):499–511.CrossRefPubMed
45.
go back to reference D. M. Page, “Restored hand sensation in human amputees via utah slanted electrode array stimulation enables performance of functional tasks and meaningful prosthesis embodiment,” Ph.D. Thesis, University of Utah, 2016. D. M. Page, “Restored hand sensation in human amputees via utah slanted electrode array stimulation enables performance of functional tasks and meaningful prosthesis embodiment,” Ph.D. Thesis, University of Utah, 2016.
46.
go back to reference Wendelken SM, et al. Motor decoding and sensory stimulation for upper-limb prostheses using implanted neural and muscular electrode arrays. In: NANS2-Neural Interface Conference (NIC). Baltimore; 2016. Wendelken SM, et al. Motor decoding and sensory stimulation for upper-limb prostheses using implanted neural and muscular electrode arrays. In: NANS2-Neural Interface Conference (NIC). Baltimore; 2016.
Metadata
Title
Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves
Authors
Suzanne Wendelken
David M. Page
Tyler Davis
Heather A. C. Wark
David T. Kluger
Christopher Duncan
David J. Warren
Douglas T. Hutchinson
Gregory A. Clark
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0320-4

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue