Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2019

Open Access 01-12-2019 | Respiratory Syncytial Virus Infection | Research

Respiratory Syncityal Virus A and B: three bronchiolitis seasons in a third level hospital in Italy

Authors: C. Ciarlitto, A. C. Vittucci, L. Antilici, C. Concato, C. Di Camillo, P. Zangari, A. Villani

Published in: Italian Journal of Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Respiratory syncytial virus (RSV) is the main cause of hospitalization for bronchiolitis among infants. RSV is classified into two subtypes, A and B, whose predominance alternates during different epidemic seasons. The clinical impact of viral factors is controversial and many evidences suggest a critical role for the immune host response. Premature children are at the highest risk for severe RSV infection. The main aim of this study is to identify the different RSV subtypes circulating in the last three epidemic seasons and to evaluate whether any of them was associated with poor prognosis in term and preterm infants.

Methods

We performed a retrospective analysis of medical records for all patients aged less than one year which were hospitalized during the winter season between November 2015 and April 2018 with clinical diagnosis of bronchiolitis and nasopharyngeal aspirates positive for RSV.

Results

We enrolled 422 children, of which 50 were born preterm. During the analysis period, we observed a significant increase in the rates of oxygen supplementation and admission to intensive care unit. The evidence shows an alternating pattern in the prevalence of RSV subtypes among term born; in each epidemic season, the prevalent serotype is the cause of the majority of the cases requiring intensive care. Conversely, RSV-A is always prevalent in preterm children and caused most of the cases requiring intensive care.

Conclusions

During the 3 seasons analyzed, we observed an alternating prevalence of RSV A and B. While there are no differences in severity between RSV A and B in term population, RSV-A is prevalent and causes most of the severe cases in the premature group. Furthermore, an increase in RSV-related oxygen therapy and PICU admission has been documented not only in the premature population. Considering the absence of appropriate therapeutic strategies, our work emphasizes the importance of implementing prophylaxis measures against RSV and highlights the urgent need to gain knowledge about immune response to the virus, also in premature children.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hall CB, Weinberg GA, Iwane MK, Blumkin AK, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360:588–98.CrossRef Hall CB, Weinberg GA, Iwane MK, Blumkin AK, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360:588–98.CrossRef
2.
go back to reference Shi T, McAllister DA, O’Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 2017;390(10098):946–58.CrossRef Shi T, McAllister DA, O’Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 2017;390(10098):946–58.CrossRef
3.
go back to reference Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet.2010;375:1545–5. Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet.2010;375:1545–5.
5.
go back to reference Rima B, Collins P, Easton A, et al. ICTV virus taxonomy profile: Pneumoviridae. J Gen Virol. 2017;98:2912–3.CrossRef Rima B, Collins P, Easton A, et al. ICTV virus taxonomy profile: Pneumoviridae. J Gen Virol. 2017;98:2912–3.CrossRef
6.
go back to reference Anderson LJ, Hierholzer JC, Tsou C, et al. Antigenic characterization of respiratory syncytial virus strains with monoclonal antibodies. J Infect Dis. 1985;151:626–33.CrossRef Anderson LJ, Hierholzer JC, Tsou C, et al. Antigenic characterization of respiratory syncytial virus strains with monoclonal antibodies. J Infect Dis. 1985;151:626–33.CrossRef
7.
go back to reference Johnson PR Jr, Olmsted RA, Prince GA, et al. Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups a and B: evaluation of the contributions of F and G glycoproteins to immunity. J Virol. 1987;61:3163–6.PubMedPubMedCentral Johnson PR Jr, Olmsted RA, Prince GA, et al. Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups a and B: evaluation of the contributions of F and G glycoproteins to immunity. J Virol. 1987;61:3163–6.PubMedPubMedCentral
8.
go back to reference Vandini S, Biagi C, Lanari M. Respiratory Syncytial Virus: the influence of serotype and genotype variability on clinical course of infection. Int J Mol Sci. 2017;18(suppl 8):1717.CrossRef Vandini S, Biagi C, Lanari M. Respiratory Syncytial Virus: the influence of serotype and genotype variability on clinical course of infection. Int J Mol Sci. 2017;18(suppl 8):1717.CrossRef
11.
go back to reference Hall CB, Weinberg GA, Blumkin AK, et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics. 2013;132(2):e341–8.CrossRef Hall CB, Weinberg GA, Blumkin AK, et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics. 2013;132(2):e341–8.CrossRef
13.
go back to reference Anderson EJ, Carbonell-Estrany X, Blanken M, et al. Burden of severe respiratory syncytial virus disease among 33–35 weeks gestational age infants born during multiple respiratory syncytial virus seasons. Pediatr Infect Dis J. 2017;36(2):160–7.CrossRef Anderson EJ, Carbonell-Estrany X, Blanken M, et al. Burden of severe respiratory syncytial virus disease among 33–35 weeks gestational age infants born during multiple respiratory syncytial virus seasons. Pediatr Infect Dis J. 2017;36(2):160–7.CrossRef
14.
go back to reference McIntosh ED, De Silva LM, Oates RK. Clinical severity of respiratory syncytial virus group a and B infection in Sydney. Australia Pediatr Infect Dis J. 1993;12:815–9.CrossRef McIntosh ED, De Silva LM, Oates RK. Clinical severity of respiratory syncytial virus group a and B infection in Sydney. Australia Pediatr Infect Dis J. 1993;12:815–9.CrossRef
15.
go back to reference Fodha I, Vabret A, Ghedira L, et al. Respiratory syncytial virus infections in hospitalized infants: association between viral load, virus subgroup, and disease severity. J Med Virol. 2007;79:1951–8.CrossRef Fodha I, Vabret A, Ghedira L, et al. Respiratory syncytial virus infections in hospitalized infants: association between viral load, virus subgroup, and disease severity. J Med Virol. 2007;79:1951–8.CrossRef
16.
go back to reference Rodriguez-Fernandez R, Tapia LI, Yang CF, et al. Respiratory syncytial virus genotypes, host immune profiles, and disease severity in young children hospitalized with bronchiolitis. J Infect Dis J. 2017;217:24–34.CrossRef Rodriguez-Fernandez R, Tapia LI, Yang CF, et al. Respiratory syncytial virus genotypes, host immune profiles, and disease severity in young children hospitalized with bronchiolitis. J Infect Dis J. 2017;217:24–34.CrossRef
17.
go back to reference Laham FR, Mansbach JM, Piedra PA, et al. Clinical profiles of respiratory syncytial virus subtypes a and B among children hospitalized with bronchiolitis. Pediatr Infect Dis J. 2017;36(8):808–10.CrossRef Laham FR, Mansbach JM, Piedra PA, et al. Clinical profiles of respiratory syncytial virus subtypes a and B among children hospitalized with bronchiolitis. Pediatr Infect Dis J. 2017;36(8):808–10.CrossRef
18.
go back to reference Papadopoulos NG, Gourgiotis D, Javadyan A, et al. Does respiratory syncytial virus subtype influences the severity of acute bronchiolitis in hospitalized infants? Respir Med. 2004;98:879–82.CrossRef Papadopoulos NG, Gourgiotis D, Javadyan A, et al. Does respiratory syncytial virus subtype influences the severity of acute bronchiolitis in hospitalized infants? Respir Med. 2004;98:879–82.CrossRef
19.
go back to reference Gilca R, De Serres G, Tremblay M, et al. Distribution and clinical impact of human respiratory syncytial virus genotypes in hospitalized children over 2 winter seasons. J Infect Dis. 2006;193:54–8.CrossRef Gilca R, De Serres G, Tremblay M, et al. Distribution and clinical impact of human respiratory syncytial virus genotypes in hospitalized children over 2 winter seasons. J Infect Dis. 2006;193:54–8.CrossRef
20.
go back to reference Jafri HS, Wu X, Makari D, Henrickson KJ. Distribution of respiratory syncytial virus subtypes a and B among infants presenting to the emergency department with lower respiratory tract infection or apnea. Pediatr Infect Dis J. 2013;32:335–40.CrossRef Jafri HS, Wu X, Makari D, Henrickson KJ. Distribution of respiratory syncytial virus subtypes a and B among infants presenting to the emergency department with lower respiratory tract infection or apnea. Pediatr Infect Dis J. 2013;32:335–40.CrossRef
21.
go back to reference Hornsleth A, Klug B, Nir M, et al. Severity of respiratory syncytial virus disease related to type and genotype of virus and to cytokine values in nasopharyngeal secretions. Pediatr Infect Dis J. 1998;17:114–1121.CrossRef Hornsleth A, Klug B, Nir M, et al. Severity of respiratory syncytial virus disease related to type and genotype of virus and to cytokine values in nasopharyngeal secretions. Pediatr Infect Dis J. 1998;17:114–1121.CrossRef
22.
go back to reference Espinosa Y, San Martín C, Torres AA, et al. Genomic loads and genotypes of respiratory syncytial virus: viral factors during lower respiratory tract infection in Chilean hospitalized infants. Int J Mol Sci. 2017;18(3):654.CrossRef Espinosa Y, San Martín C, Torres AA, et al. Genomic loads and genotypes of respiratory syncytial virus: viral factors during lower respiratory tract infection in Chilean hospitalized infants. Int J Mol Sci. 2017;18(3):654.CrossRef
23.
go back to reference Panayiotou C, Richter J, Koliou M, et al. Epidemiology of respiratory syncytial virus in children in Cyprus during three consecutive winter seasons (2010–2013): age distribution, seasonality and association between prevalent genotypes and disease severity. Epidemiol Infect. 2014;142(11):2406–11.CrossRef Panayiotou C, Richter J, Koliou M, et al. Epidemiology of respiratory syncytial virus in children in Cyprus during three consecutive winter seasons (2010–2013): age distribution, seasonality and association between prevalent genotypes and disease severity. Epidemiol Infect. 2014;142(11):2406–11.CrossRef
24.
go back to reference Cangiano G, Nenna R, Frassanito A, et al. Bronchiolitis: analysis of 10 consecutive epidemic season. Pediatr Pulmonol. 2016;51:1330–5.CrossRef Cangiano G, Nenna R, Frassanito A, et al. Bronchiolitis: analysis of 10 consecutive epidemic season. Pediatr Pulmonol. 2016;51:1330–5.CrossRef
25.
go back to reference Horn SD, Smout RJ. Effect of prematurity on respiratory syncytial virus hospital resource and outcomes. J Pediatr. 2003;143(suppl5):133–44.CrossRef Horn SD, Smout RJ. Effect of prematurity on respiratory syncytial virus hospital resource and outcomes. J Pediatr. 2003;143(suppl5):133–44.CrossRef
27.
go back to reference American Academy of Pediatrics Committee on Infectious Diseases, American Academy of Pediatrics Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics. 2014;134(2):e620–38.CrossRef American Academy of Pediatrics Committee on Infectious Diseases, American Academy of Pediatrics Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics. 2014;134(2):e620–38.CrossRef
30.
go back to reference Silvestri M, Marando F, Costanzo AM, et al. Respiratory syncytial virus-associated hospitalization in premature infants who did not receive palivizumab prophylaxis in Italy: a retrospective analysis from the Osservatorio study. Ital J Pediatr. 2016;42:40.CrossRef Silvestri M, Marando F, Costanzo AM, et al. Respiratory syncytial virus-associated hospitalization in premature infants who did not receive palivizumab prophylaxis in Italy: a retrospective analysis from the Osservatorio study. Ital J Pediatr. 2016;42:40.CrossRef
31.
go back to reference Zuccotti G, Fabiano V. Indications to respiratory syncytial virus immunoprophylaxis in the 29-32 wGA group: is there still room for debating? Ital J Pediatr. 2017;43:17.CrossRef Zuccotti G, Fabiano V. Indications to respiratory syncytial virus immunoprophylaxis in the 29-32 wGA group: is there still room for debating? Ital J Pediatr. 2017;43:17.CrossRef
33.
go back to reference Carbonell-Estrany X, Pérez-Yarza EG, García LS, et al. Long-term burden and respiratory effects of respiratory syncytial virus hospitalization in preterm infants—the SPRING study. PLoS One. 2015;10(5):e0125422.CrossRef Carbonell-Estrany X, Pérez-Yarza EG, García LS, et al. Long-term burden and respiratory effects of respiratory syncytial virus hospitalization in preterm infants—the SPRING study. PLoS One. 2015;10(5):e0125422.CrossRef
34.
go back to reference Lanari M, Giovannini M, Giuffré L, et al. Prevalence of respiratory syncytial virus infection in Italian infants hospitalized for acute lower respiratory tract infections, and association between respiratory syncytial virus infection risk factors and disease severity. Ped Pulmonol. 2002;33:458–65.CrossRef Lanari M, Giovannini M, Giuffré L, et al. Prevalence of respiratory syncytial virus infection in Italian infants hospitalized for acute lower respiratory tract infections, and association between respiratory syncytial virus infection risk factors and disease severity. Ped Pulmonol. 2002;33:458–65.CrossRef
35.
go back to reference Nenna R, Cutrera R, Frassanito A, et al. Modificable risk factors associated with bronchiolitis. Ther Adv Respir Dis. 2017;11(10):393–401.CrossRef Nenna R, Cutrera R, Frassanito A, et al. Modificable risk factors associated with bronchiolitis. Ther Adv Respir Dis. 2017;11(10):393–401.CrossRef
36.
go back to reference Correa-Rocha R, Pérez A, Lorente F, et al. Preterm neonates show marked leukopenia and lymphopenia that are associated with increased regulatory T-cell values and diminished IL-7. Pediatr Res. 2012;71(5):590–7.CrossRef Correa-Rocha R, Pérez A, Lorente F, et al. Preterm neonates show marked leukopenia and lymphopenia that are associated with increased regulatory T-cell values and diminished IL-7. Pediatr Res. 2012;71(5):590–7.CrossRef
37.
go back to reference Esposito S, Scarselli E, Lelii M, et al. Antibody response to respiratory syncytial virus infection in children <18 month old. Hum Vaccin Immmunother. 2016;12(7):1700–6. Esposito S, Scarselli E, Lelii M, et al. Antibody response to respiratory syncytial virus infection in children <18 month old. Hum Vaccin Immmunother. 2016;12(7):1700–6.
38.
go back to reference Russell CD, Unger SA, Walton M, Schwarze J. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 2017;30(2):481–502.CrossRef Russell CD, Unger SA, Walton M, Schwarze J. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 2017;30(2):481–502.CrossRef
39.
go back to reference Wu W, Macdonald A, Hiscox JA, Barr JN. Different NF-kappaB activation characteristics of human respiratory syncytial virus subgroups a and B. Microb Pathog. 2012;52(3):184–91.CrossRef Wu W, Macdonald A, Hiscox JA, Barr JN. Different NF-kappaB activation characteristics of human respiratory syncytial virus subgroups a and B. Microb Pathog. 2012;52(3):184–91.CrossRef
40.
go back to reference Graham BS, Modjarrad K, McLellan JS. Novel antigens for RSV vaccines. Curr Opin Immunol. 2015;35:30–8.CrossRef Graham BS, Modjarrad K, McLellan JS. Novel antigens for RSV vaccines. Curr Opin Immunol. 2015;35:30–8.CrossRef
41.
go back to reference Vittucci AC, Zangari P, Ciarlitto C, et al. Active prophylaxis for respiratory syncytial virus: current knowledge and future perspectives. Minerva Pediatr. 2018;70(6):566–78.CrossRef Vittucci AC, Zangari P, Ciarlitto C, et al. Active prophylaxis for respiratory syncytial virus: current knowledge and future perspectives. Minerva Pediatr. 2018;70(6):566–78.CrossRef
42.
go back to reference Petrarca L, Nenna R, Frassanito A, et al. Acute bronchiolitis: influence of viral co-infection in infants hospitalized over 12 consecutive epidemic seasons. J Med Virol. 2017;90(4):631–8.CrossRef Petrarca L, Nenna R, Frassanito A, et al. Acute bronchiolitis: influence of viral co-infection in infants hospitalized over 12 consecutive epidemic seasons. J Med Virol. 2017;90(4):631–8.CrossRef
43.
go back to reference Brand HK, de Groot R, Galama JM, et al. Infection with multiple viruses is not associated with increased disease severity in children with bronchiolitis. Pediatr Pulmonol. 2012;47:393–400.CrossRef Brand HK, de Groot R, Galama JM, et al. Infection with multiple viruses is not associated with increased disease severity in children with bronchiolitis. Pediatr Pulmonol. 2012;47:393–400.CrossRef
44.
go back to reference Richard N, Komurian-Pradel F, Javouhey E, et al. The impact of dual viral infection in infants admitted to a pediatric intensive care unit associated with severe bronchiolitis. Pediatr Infect Dis J. 2008;27:213–7.CrossRef Richard N, Komurian-Pradel F, Javouhey E, et al. The impact of dual viral infection in infants admitted to a pediatric intensive care unit associated with severe bronchiolitis. Pediatr Infect Dis J. 2008;27:213–7.CrossRef
45.
go back to reference Calvo C, Garcia-Garcia ML, Blanco C, et al. Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain. J Clin Virol. 2008;42:268–72.CrossRef Calvo C, Garcia-Garcia ML, Blanco C, et al. Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain. J Clin Virol. 2008;42:268–72.CrossRef
46.
go back to reference Picone S, Fabiano A, Roma D, et al. Re-comparing of three different epidemic seasons of bronchiolitis: different prophylaxis approaches. Ital J Pediatr. 2018;44:148.CrossRef Picone S, Fabiano A, Roma D, et al. Re-comparing of three different epidemic seasons of bronchiolitis: different prophylaxis approaches. Ital J Pediatr. 2018;44:148.CrossRef
Metadata
Title
Respiratory Syncityal Virus A and B: three bronchiolitis seasons in a third level hospital in Italy
Authors
C. Ciarlitto
A. C. Vittucci
L. Antilici
C. Concato
C. Di Camillo
P. Zangari
A. Villani
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2019
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-019-0704-0

Other articles of this Issue 1/2019

Italian Journal of Pediatrics 1/2019 Go to the issue