Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Research article

Respiratory severity score as a predictive factor for severe bronchopulmonary dysplasia or death in extremely preterm infants

Authors: Young Hwa Jung, Jinhee Jang, Han-Suk Kim, Seung Han Shin, Chang Won Choi, Ee-Kyung Kim, Beyong Il Kim

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Despite significant advances in neonatology, bronchopulmonary dysplasia (BPD) remains the most common cause of serious morbidity and mortality in premature infants. The aim of the present study was to determine associations between the respiratory severity score (RSS) with death or BPD in premature infants.

Methods

This was a retrospective study conducted between January 2010 and December 2014. We enrolled preterm infants with a gestational age of less than 28 weeks who were supported by mechanical ventilation for more than a week during the first 4 weeks of life. We collected the RSS scores on day of life 2, 7, 14, 21 and 28. The correlations between postnatal RSSs and death or severe BPD were analyzed using multivariate logistic regression.

Results

Of the 138 eligible infants, 66 infants (47.8%) either died or developed severe BPD. The RSS cut-off values for predicting severe BPD or death were 3.0 for postnatal day (PND) 14 with an odds ratio (OR) of 11.265 (p = 0.0006, 95% confidence interval (CI), 2.842 to 44.646), 3.6 for PND 21 with an OR of 15.162 (p = 0.0003, 95% CI, 3.467 to 66.316), and 3.24 for PND 28 with an OR of 10.713 (p = 0.0005, 95% CI, 2.825 to 40.630).

Conclusion

Strong correlations were observed between the RSSs on PND 14, 21, and 28 and death or subsequent severe BPD. The RSS could provide a simple estimate of severe BPD or death., Further research with a larger study population is necessary to validate the usefulness of the RSS for predicting severe BPD or death.
Appendix
Available only for authorised users
Literature
1.
go back to reference Halliday H, O’neill C. What is the evidence for drug therapy in the prevention and management of bronchopulmonary dysplasia. In: Bancalari E, editor. The newborn lung: neonatal questions and controversies. 1st ed. Amsterdam: Saunders Elsevier; 2008. p. 208–32.CrossRef Halliday H, O’neill C. What is the evidence for drug therapy in the prevention and management of bronchopulmonary dysplasia. In: Bancalari E, editor. The newborn lung: neonatal questions and controversies. 1st ed. Amsterdam: Saunders Elsevier; 2008. p. 208–32.CrossRef
2.
go back to reference Manktelow BN, Draper ES, Annamalai S. Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997. Arch Dis Child Fetal Neonatal Ed. 2001;85:F33–5.CrossRef Manktelow BN, Draper ES, Annamalai S. Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997. Arch Dis Child Fetal Neonatal Ed. 2001;85:F33–5.CrossRef
3.
go back to reference Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ, et al. Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr. 2005;146:469–73.CrossRef Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ, et al. Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr. 2005;146:469–73.CrossRef
4.
go back to reference Shah PS, Sankaran K, Aziz K, Allen AC, Seshia M, Ohlsson A, et al. Outcomes of preterm infants <29 weeks gestation over 10-year period in Canada: a cause for concern? J Perinatol. 2012;32:132–8.CrossRef Shah PS, Sankaran K, Aziz K, Allen AC, Seshia M, Ohlsson A, et al. Outcomes of preterm infants <29 weeks gestation over 10-year period in Canada: a cause for concern? J Perinatol. 2012;32:132–8.CrossRef
5.
go back to reference Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.CrossRef Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.CrossRef
6.
go back to reference Cristea AI, Carroll AE, Davis SD, Swigonski NL, Ackerman VL. Outcomes of children with severe bronchopulmonary dysplasia who were ventilator dependent at home. Pediatrics. 2013;132:e727–34.CrossRef Cristea AI, Carroll AE, Davis SD, Swigonski NL, Ackerman VL. Outcomes of children with severe bronchopulmonary dysplasia who were ventilator dependent at home. Pediatrics. 2013;132:e727–34.CrossRef
7.
go back to reference Smith VC, Zupancic JA, McCormick MC, Croen LA, Creene J, Escobar GJ, et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J Pediatr. 2004;144:799–803.PubMed Smith VC, Zupancic JA, McCormick MC, Croen LA, Creene J, Escobar GJ, et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J Pediatr. 2004;144:799–803.PubMed
8.
go back to reference Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289(9):1124–9.CrossRef Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA. 2003;289(9):1124–9.CrossRef
9.
go back to reference Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:227–32.CrossRef Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:227–32.CrossRef
10.
go back to reference Doyle LW, Anderson PJ. Long-term outcomes of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14:391–5.CrossRef Doyle LW, Anderson PJ. Long-term outcomes of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14:391–5.CrossRef
11.
go back to reference Jeng SF, Hsu CH, Tsao PN, Chou HC, Lee WT, Kao HA, et al. Bronchopulmonary dysplasia predicts adverse developmental and clinical outcomes in very-low-birth-weight infants. Dev Med Child Neurol. 2008;50:51–7.CrossRef Jeng SF, Hsu CH, Tsao PN, Chou HC, Lee WT, Kao HA, et al. Bronchopulmonary dysplasia predicts adverse developmental and clinical outcomes in very-low-birth-weight infants. Dev Med Child Neurol. 2008;50:51–7.CrossRef
12.
go back to reference Lal CV, Ambalavanan N. Biomarkers, early diagnosis, and clinical predictors of bronchopulmonary dysplasia. Clin Perinatol. 2015;42:739–54.CrossRef Lal CV, Ambalavanan N. Biomarkers, early diagnosis, and clinical predictors of bronchopulmonary dysplasia. Clin Perinatol. 2015;42:739–54.CrossRef
13.
go back to reference Kim EH, Cohen RS, Ramachandran P. Effect of vascular puncture on blood gases in the newborn. Pediatr Pulmonol. 1991;10:287–90.CrossRef Kim EH, Cohen RS, Ramachandran P. Effect of vascular puncture on blood gases in the newborn. Pediatr Pulmonol. 1991;10:287–90.CrossRef
14.
go back to reference Iver NP, Mhanna MJ. Non-invasively derived respiratory severity score and oxygenation index in ventilated newborn infants. Pediatr Pulmonol. 2013;48:364–9.CrossRef Iver NP, Mhanna MJ. Non-invasively derived respiratory severity score and oxygenation index in ventilated newborn infants. Pediatr Pulmonol. 2013;48:364–9.CrossRef
15.
go back to reference Malkar MB, Gardner WP, Mandy GT, Stenger MR, Nelin LD, Shepherd EG, et al. Respiratory severity score on day of life 30 is predictive of mortality and the length of mechanical ventilation in premature infants with protracted ventilation. Pediatr Pulmonol. 2015;50(4):363–9.CrossRef Malkar MB, Gardner WP, Mandy GT, Stenger MR, Nelin LD, Shepherd EG, et al. Respiratory severity score on day of life 30 is predictive of mortality and the length of mechanical ventilation in premature infants with protracted ventilation. Pediatr Pulmonol. 2015;50(4):363–9.CrossRef
16.
go back to reference Kattwinkel J, Perlman JM, Aziz K, Colby C, Fairchild K, Gallagher J, et al. Part 15: neonatal resuscitation: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S909–19.CrossRef Kattwinkel J, Perlman JM, Aziz K, Colby C, Fairchild K, Gallagher J, et al. Part 15: neonatal resuscitation: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S909–19.CrossRef
17.
go back to reference Glenski JA, Marsh HM, Hall RT. Calculation of mean airway pressure during mechanical ventilation in neonates. Crit Care Med. 1984;12:642–4.CrossRef Glenski JA, Marsh HM, Hall RT. Calculation of mean airway pressure during mechanical ventilation in neonates. Crit Care Med. 1984;12:642–4.CrossRef
18.
go back to reference American Academy of Pediatrics Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002;109(2):330–8.CrossRef American Academy of Pediatrics Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002;109(2):330–8.CrossRef
19.
go back to reference Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.CrossRef Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.CrossRef
21.
go back to reference Greenland S. Avoiding power loss associated with categorization and ordinal scores in dose-reposne and trend analysis. Epidemiology. 1995;6:450–4.CrossRef Greenland S. Avoiding power loss associated with categorization and ordinal scores in dose-reposne and trend analysis. Epidemiology. 1995;6:450–4.CrossRef
22.
go back to reference Altman DG, Lausen B, Sauerbrei W, Schumacher M. Danger of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;84:829–35.CrossRef Altman DG, Lausen B, Sauerbrei W, Schumacher M. Danger of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;84:829–35.CrossRef
23.
go back to reference Faraggi D, Simon R. A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Statist Med. 1996;15:2203–13.CrossRef Faraggi D, Simon R. A simulation study of cross-validation for selecting an optimal cutpoint in univariate survival analysis. Statist Med. 1996;15:2203–13.CrossRef
24.
go back to reference McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung disease. Ann Am Thorac Soc. 2014;11(Suppl3):S146–53.CrossRef McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung disease. Ann Am Thorac Soc. 2014;11(Suppl3):S146–53.CrossRef
25.
go back to reference Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med. 2006;355:343–53.CrossRef Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med. 2006;355:343–53.CrossRef
26.
go back to reference Askie LM, Ballard RA, Cutter GR, Dani C, Elbourne D, Field D, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics. 2011;128(4):729–39.CrossRef Askie LM, Ballard RA, Cutter GR, Dani C, Elbourne D, Field D, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics. 2011;128(4):729–39.CrossRef
27.
go back to reference Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment after the first week of life for bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(4):289–96.CrossRef Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment after the first week of life for bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(4):289–96.CrossRef
28.
go back to reference Doyle LW, Ehrenkranz RA, Halliday HL. Postnatal hydrocortisone for preventing or treating bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(2):111–7.CrossRef Doyle LW, Ehrenkranz RA, Halliday HL. Postnatal hydrocortisone for preventing or treating bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(2):111–7.CrossRef
29.
go back to reference van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180:1131–42.CrossRef van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180:1131–42.CrossRef
30.
go back to reference Pierro M, Lonescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 2013;68:475–84.CrossRef Pierro M, Lonescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 2013;68:475–84.CrossRef
31.
go back to reference Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183:1715–22.CrossRef Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183:1715–22.CrossRef
33.
go back to reference Mercier JC, Hummler H, Durrmeyer X, Sanchez-Luna M, Carnielli V, Field D, et al. Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomized controlled trial. Lancet. 2010;376:346–54.CrossRef Mercier JC, Hummler H, Durrmeyer X, Sanchez-Luna M, Carnielli V, Field D, et al. Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): a randomized controlled trial. Lancet. 2010;376:346–54.CrossRef
34.
go back to reference Schreiber MD, Gin-Mestan K, Marks JD, Huo D, Lee G, Srisuparp P. Inhaled nitric oxide in premature infants with the respiratory distress syndrome. N Engl J Med. 2003;349:2099–107.CrossRef Schreiber MD, Gin-Mestan K, Marks JD, Huo D, Lee G, Srisuparp P. Inhaled nitric oxide in premature infants with the respiratory distress syndrome. N Engl J Med. 2003;349:2099–107.CrossRef
35.
go back to reference Kinsella JP, Cutter GR, Walsh WF, Gerstmann DR, Bose CL, Hart C, et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med. 2006;355:354–64.CrossRef Kinsella JP, Cutter GR, Walsh WF, Gerstmann DR, Bose CL, Hart C, et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med. 2006;355:354–64.CrossRef
36.
go back to reference Obladen M, Sachsenweger M, Stahnke M. Blood sampling in very low birth weight infants receiving different levels of intensive care. Eur J Pediatr. 1988;147:399–404.CrossRef Obladen M, Sachsenweger M, Stahnke M. Blood sampling in very low birth weight infants receiving different levels of intensive care. Eur J Pediatr. 1988;147:399–404.CrossRef
37.
go back to reference Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigshnecht C, Swartz D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107:106–66.CrossRef Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigshnecht C, Swartz D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107:106–66.CrossRef
38.
go back to reference Support Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer NN, Carlo WA, Walsh MC, Rich W, Grantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362:1970–9.CrossRef Support Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Finer NN, Carlo WA, Walsh MC, Rich W, Grantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362:1970–9.CrossRef
39.
go back to reference Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700–8.CrossRef Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700–8.CrossRef
Metadata
Title
Respiratory severity score as a predictive factor for severe bronchopulmonary dysplasia or death in extremely preterm infants
Authors
Young Hwa Jung
Jinhee Jang
Han-Suk Kim
Seung Han Shin
Chang Won Choi
Ee-Kyung Kim
Beyong Il Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1492-9

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue