Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Respiratory Microbiota | Research

Causal relationship between gut microbiota and gastrointestinal diseases: a mendelian randomization study

Authors: Kaiwen Wu, Qiang Luo, Ye Liu, Aoshuang Li, Demeng Xia, Xiaobin Sun

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

Recent research increasingly highlights a strong correlation between gut microbiota and the risk of gastrointestinal diseases. However, whether this relationship is causal or merely coincidental remains uncertain. To address this, a Mendelian randomization (MR) analysis was undertaken to explore the connections between gut microbiota and prevalent gastrointestinal diseases.

Methods

Genome-wide association study (GWAS) summary statistics for gut microbiota, encompassing a diverse range of 211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla), were sourced from the comprehensive MiBioGen study. Genetic associations with 22 gastrointestinal diseases were gathered from the UK Biobank, FinnGen study, and various extensive GWAS studies. MR analysis was meticulously conducted to assess the causal relationship between genetically predicted gut microbiota and these gastrointestinal diseases. To validate the reliability of our findings, sensitivity analyses and tests for heterogeneity were systematically performed.

Results

The MR analysis yielded significant evidence for 251 causal relationships between genetically predicted gut microbiota and the risk of gastrointestinal diseases. This included 98 associations with upper gastrointestinal diseases, 81 with lower gastrointestinal diseases, 54 with hepatobiliary diseases, and 18 with pancreatic diseases. Notably, these associations were particularly evident in taxa belonging to the genera Ruminococcus and Eubacterium. Further sensitivity analyses reinforced the robustness of these results.

Conclusions

The findings of this study indicate a potential genetic predisposition linking gut microbiota to gastrointestinal diseases. These insights pave the way for designing future clinical trials focusing on microbiome-related interventions, including the use of microbiome-dependent metabolites, to potentially treat or manage gastrointestinal diseases and their associated risk factors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.PubMedCrossRef Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.PubMedCrossRef
3.
go back to reference Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69:1510–9.PubMedCrossRef Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69:1510–9.PubMedCrossRef
5.
go back to reference Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76:473–93.PubMedCrossRef Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76:473–93.PubMedCrossRef
6.
go back to reference Junca H, Pieper DH, Medina E. The emerging potential of microbiome transplantation on human health interventions. Comput Struct Biotechnol J. 2022;20:615–27.PubMedPubMedCentralCrossRef Junca H, Pieper DH, Medina E. The emerging potential of microbiome transplantation on human health interventions. Comput Struct Biotechnol J. 2022;20:615–27.PubMedPubMedCentralCrossRef
7.
go back to reference Gao L, Xia X, Shuai Y, Zhang H, Jin W, Zhang X, Zhang Y. Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. Front Pharmacol. 2023;14: 1164150.PubMedPubMedCentralCrossRef Gao L, Xia X, Shuai Y, Zhang H, Jin W, Zhang X, Zhang Y. Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. Front Pharmacol. 2023;14: 1164150.PubMedPubMedCentralCrossRef
8.
go back to reference Sasso JM, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut microbiome-brain alliance: a landscape view into mental and gastrointestinal health and disorders. ACS Chem Neurosci. 2023;14:1717–63.PubMedCrossRef Sasso JM, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut microbiome-brain alliance: a landscape view into mental and gastrointestinal health and disorders. ACS Chem Neurosci. 2023;14:1717–63.PubMedCrossRef
9.
go back to reference Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to Mood. Gastroenterology. 2021;160:1486–501.PubMedCrossRef Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to Mood. Gastroenterology. 2021;160:1486–501.PubMedCrossRef
10.
go back to reference Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv Nutr. 2017;8:484–94.PubMedPubMedCentralCrossRef Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv Nutr. 2017;8:484–94.PubMedPubMedCentralCrossRef
11.
go back to reference Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:4053–60.PubMedPubMedCentralCrossRef Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:4053–60.PubMedPubMedCentralCrossRef
12.
go back to reference Liu X, Tong X, Zou Y, Lin X, Zhao H, Tian L, Jie Z, Wang Q, Zhang Z, Lu H, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat Genet. 2022;54:52–61.PubMedCrossRef Liu X, Tong X, Zou Y, Lin X, Zhao H, Tian L, Jie Z, Wang Q, Zhang Z, Lu H, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat Genet. 2022;54:52–61.PubMedCrossRef
15.
go back to reference Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184:4137-4153e4114.PubMedPubMedCentralCrossRef Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184:4137-4153e4114.PubMedPubMedCentralCrossRef
18.
20.
21.
go back to reference Sleiman PM, Grant SF. Mendelian randomization in the era of genomewide association studies. Clin Chem. 2010;56:723–8.PubMedCrossRef Sleiman PM, Grant SF. Mendelian randomization in the era of genomewide association studies. Clin Chem. 2010;56:723–8.PubMedCrossRef
22.
go back to reference Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.PubMedPubMedCentralCrossRef Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.PubMedPubMedCentralCrossRef
23.
go back to reference Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, Zhang H, Zhang L, Li B, Pei YF. Causal relationship between gut microbiota and autoimmune diseases: a two-sample mendelian randomization study. Front Immunol. 2021;12:746998.PubMedCrossRef Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, Zhang H, Zhang L, Li B, Pei YF. Causal relationship between gut microbiota and autoimmune diseases: a two-sample mendelian randomization study. Front Immunol. 2021;12:746998.PubMedCrossRef
24.
go back to reference Ni JJ, Xu Q, Yan SS, Han BX, Zhang H, Wei XT, Feng GJ, Zhao M, Pei YF, Zhang L. Gut microbiota and psychiatric disorders: a two-sample mendelian randomization study. Front Microbiol. 2021;12:737197.PubMedCrossRef Ni JJ, Xu Q, Yan SS, Han BX, Zhang H, Wei XT, Feng GJ, Zhao M, Pei YF, Zhang L. Gut microbiota and psychiatric disorders: a two-sample mendelian randomization study. Front Microbiol. 2021;12:737197.PubMedCrossRef
25.
go back to reference Wei Z, Yang B, Tang T, Xiao Z, Ye F, Li X, Wu S, Huang JG, Jiang S. Gut microbiota and risk of five common cancers: a univariable and multivariable mendelian randomization study. Cancer Med. 2023;12:10393–405.PubMedPubMedCentralCrossRef Wei Z, Yang B, Tang T, Xiao Z, Ye F, Li X, Wu S, Huang JG, Jiang S. Gut microbiota and risk of five common cancers: a univariable and multivariable mendelian randomization study. Cancer Med. 2023;12:10393–405.PubMedPubMedCentralCrossRef
26.
go back to reference Luo M, Sun M, Wang T, Zhang S, Song X, Liu X, Wei J, Chen Q, Zhong T, Qin J. Gut microbiota and type 1 diabetes: a two-sample bidirectional mendelian randomization study. Front Cell Infect Microbiol. 2023;13: 1163898.PubMedPubMedCentralCrossRef Luo M, Sun M, Wang T, Zhang S, Song X, Liu X, Wei J, Chen Q, Zhong T, Qin J. Gut microbiota and type 1 diabetes: a two-sample bidirectional mendelian randomization study. Front Cell Infect Microbiol. 2023;13: 1163898.PubMedPubMedCentralCrossRef
27.
go back to reference Burgess S, Thompson SG. Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.PubMedCrossRef Burgess S, Thompson SG. Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.PubMedCrossRef
28.
go back to reference Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.PubMedCrossRef Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.PubMedCrossRef
29.
go back to reference Bahls M, Leitzmann MF, Karch A, Teumer A, Dörr M, Felix SB, Meisinger C, Baumeister SE, Baurecht H. Physical activity, sedentary behavior and risk of coronary artery disease, myocardial infarction and ischemic stroke: a two-sample mendelian randomization study. Clin Res Cardiol. 2021;110:1564–73.PubMedPubMedCentralCrossRef Bahls M, Leitzmann MF, Karch A, Teumer A, Dörr M, Felix SB, Meisinger C, Baumeister SE, Baurecht H. Physical activity, sedentary behavior and risk of coronary artery disease, myocardial infarction and ischemic stroke: a two-sample mendelian randomization study. Clin Res Cardiol. 2021;110:1564–73.PubMedPubMedCentralCrossRef
30.
go back to reference Sadik A, Dardani C, Pagoni P, Havdahl A, Stergiakouli E, Khandaker GM, Sullivan SA, Zammit S, Jones HJ, Davey Smith G, et al. Parental inflammatory bowel disease and autism in children. Nat Med. 2022;28:1406–11.PubMedPubMedCentralCrossRef Sadik A, Dardani C, Pagoni P, Havdahl A, Stergiakouli E, Khandaker GM, Sullivan SA, Zammit S, Jones HJ, Davey Smith G, et al. Parental inflammatory bowel disease and autism in children. Nat Med. 2022;28:1406–11.PubMedPubMedCentralCrossRef
31.
go back to reference Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:7.CrossRef Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:7.CrossRef
32.
go back to reference Jin S, Wang T, Wenying C, Wu Y, Huang S, Zeng P. Maternal and fetal origins of offspring blood pressure: statistical analysis using genetic correlation and genetic risk score-based mendelian randomization. Int J Epidemiol. 2023;52:1360–76.PubMedCrossRef Jin S, Wang T, Wenying C, Wu Y, Huang S, Zeng P. Maternal and fetal origins of offspring blood pressure: statistical analysis using genetic correlation and genetic risk score-based mendelian randomization. Int J Epidemiol. 2023;52:1360–76.PubMedCrossRef
34.
go back to reference Maukonen J, Kolho KL, Paasela M, Honkanen J, Klemetti P, Vaarala O, Saarela M. Altered fecal microbiota in paediatric inflammatory bowel disease. J Crohns Colitis. 2015;9:1088–95.PubMedCrossRef Maukonen J, Kolho KL, Paasela M, Honkanen J, Klemetti P, Vaarala O, Saarela M. Altered fecal microbiota in paediatric inflammatory bowel disease. J Crohns Colitis. 2015;9:1088–95.PubMedCrossRef
35.
go back to reference Liu X, Qi X, Han R, Mao T, Tian Z. Gut microbiota causally affects cholelithiasis: a two-sample mendelian randomization study. Front Cell Infect Microbiol. 2023;13: 1253447.PubMedPubMedCentralCrossRef Liu X, Qi X, Han R, Mao T, Tian Z. Gut microbiota causally affects cholelithiasis: a two-sample mendelian randomization study. Front Cell Infect Microbiol. 2023;13: 1253447.PubMedPubMedCentralCrossRef
36.
go back to reference Pinto S, Benincà E, Galazzo G, Jonkers D, Penders J, Bogaards JA. Heterogeneous associations of gut microbiota with Crohn’s disease activity. Gut Microbes. 2024;16: 2292239.PubMedCrossRef Pinto S, Benincà E, Galazzo G, Jonkers D, Penders J, Bogaards JA. Heterogeneous associations of gut microbiota with Crohn’s disease activity. Gut Microbes. 2024;16: 2292239.PubMedCrossRef
37.
go back to reference Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol. 2021;19:553–66.PubMedCrossRef Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol. 2021;19:553–66.PubMedCrossRef
38.
go back to reference Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, Oh S, Gay CG. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res. 2018;49:76.PubMedPubMedCentralCrossRef Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, Oh S, Gay CG. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res. 2018;49:76.PubMedPubMedCentralCrossRef
39.
go back to reference Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.PubMedCrossRef Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.PubMedCrossRef
40.
go back to reference Chen G, Ran X, Li B, Li Y, He D, Huang B, Fu S, Liu J, Wang W. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine. 2018;30:317–25.PubMedPubMedCentralCrossRef Chen G, Ran X, Li B, Li Y, He D, Huang B, Fu S, Liu J, Wang W. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine. 2018;30:317–25.PubMedPubMedCentralCrossRef
41.
go back to reference Recharla N, Geesala R, Shi XZ. Gut microbial metabolite butyrate and its therapeutic role in inflammatory bowel disease: a literature review. Nutrients. 2023;15:2275.PubMedPubMedCentralCrossRef Recharla N, Geesala R, Shi XZ. Gut microbial metabolite butyrate and its therapeutic role in inflammatory bowel disease: a literature review. Nutrients. 2023;15:2275.PubMedPubMedCentralCrossRef
42.
go back to reference Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021;13: 1968257.PubMedPubMedCentralCrossRef Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021;13: 1968257.PubMedPubMedCentralCrossRef
43.
go back to reference Xu Q, Zhang SS, Wang RR, Weng YJ, Cui X, Wei XT, Ni JJ, Ren HG, Zhang L, Pei YF. Mendelian randomization analysis reveals causal effects of the human gut microbiota on abdominal obesity. J Nutr. 2021;151:1401–6.PubMedCrossRef Xu Q, Zhang SS, Wang RR, Weng YJ, Cui X, Wei XT, Ni JJ, Ren HG, Zhang L, Pei YF. Mendelian randomization analysis reveals causal effects of the human gut microbiota on abdominal obesity. J Nutr. 2021;151:1401–6.PubMedCrossRef
44.
go back to reference Wang J, Zhang H, Chen X, Chen Y, Menghebilige, Bao Q. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci. 2012;95:1645–54.PubMedCrossRef Wang J, Zhang H, Chen X, Chen Y, Menghebilige, Bao Q. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci. 2012;95:1645–54.PubMedCrossRef
45.
go back to reference Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: from association to therapeutic perspectives. Comput Struct Biotechnol J. 2022;20:2402–14.PubMedPubMedCentralCrossRef Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: from association to therapeutic perspectives. Comput Struct Biotechnol J. 2022;20:2402–14.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol. 2022;13: 1021924.PubMedPubMedCentralCrossRef Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol. 2022;13: 1021924.PubMedPubMedCentralCrossRef
48.
go back to reference Lajczak-McGinley NK, Porru E, Fallon CM, Smyth J, Curley C, McCarron PA, Tambuwala MM, Roda A, Keely SJ. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol Rep. 2020;8:e14456.PubMedPubMedCentralCrossRef Lajczak-McGinley NK, Porru E, Fallon CM, Smyth J, Curley C, McCarron PA, Tambuwala MM, Roda A, Keely SJ. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol Rep. 2020;8:e14456.PubMedPubMedCentralCrossRef
49.
go back to reference Xu T, Ge Y, Du H, Li Q, Xu X, Yi H, Wu X, Kuang T, Fan G, Zhang Y. Berberis kansuensis extract alleviates type 2 diabetes in rats by regulating gut microbiota composition. J Ethnopharmacol. 2021;273: 113995.PubMedCrossRef Xu T, Ge Y, Du H, Li Q, Xu X, Yi H, Wu X, Kuang T, Fan G, Zhang Y. Berberis kansuensis extract alleviates type 2 diabetes in rats by regulating gut microbiota composition. J Ethnopharmacol. 2021;273: 113995.PubMedCrossRef
50.
go back to reference Crost EH, Coletto E, Bell A, Juge N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol Rev. 2023;47:fuad01.CrossRef Crost EH, Coletto E, Bell A, Juge N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol Rev. 2023;47:fuad01.CrossRef
51.
go back to reference Paramsothy S, Nielsen S, Kamm MA, Deshpande NP, Faith JJ, Clemente JC, Paramsothy R, Walsh AJ, van den Bogaerde J, Samuel D, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology. 2019;156:1440-1454e1442.PubMedCrossRef Paramsothy S, Nielsen S, Kamm MA, Deshpande NP, Faith JJ, Clemente JC, Paramsothy R, Walsh AJ, van den Bogaerde J, Samuel D, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology. 2019;156:1440-1454e1442.PubMedCrossRef
52.
go back to reference Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.PubMedCrossRef Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.PubMedCrossRef
53.
go back to reference Li N, Wang M, Lyu Z, Shan K, Chen Z, Chen B, Chen Y, Hu X, Dou B, Zhang J, et al. Medicinal plant-based drug delivery system for inflammatory bowel disease. Front Pharmacol. 2023;14: 1158945.PubMedPubMedCentralCrossRef Li N, Wang M, Lyu Z, Shan K, Chen Z, Chen B, Chen Y, Hu X, Dou B, Zhang J, et al. Medicinal plant-based drug delivery system for inflammatory bowel disease. Front Pharmacol. 2023;14: 1158945.PubMedPubMedCentralCrossRef
54.
go back to reference Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: the role of microbiota-derived metabolites. Pharmacol Res. 2019;141:521–9.PubMedPubMedCentralCrossRef Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: the role of microbiota-derived metabolites. Pharmacol Res. 2019;141:521–9.PubMedPubMedCentralCrossRef
55.
go back to reference Ghosh S, Yang X, Wang L, Zhang C, Zhao L. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Comput Struct Biotechnol J. 2021;19:448–58.PubMedCrossRef Ghosh S, Yang X, Wang L, Zhang C, Zhao L. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Comput Struct Biotechnol J. 2021;19:448–58.PubMedCrossRef
56.
go back to reference Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.PubMedCrossRef Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.PubMedCrossRef
57.
go back to reference Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, Guo H, Zhang H, Ge S, Wu C, Zhao L. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 2020;245:425–37.PubMedCrossRef Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, Guo H, Zhang H, Ge S, Wu C, Zhao L. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 2020;245:425–37.PubMedCrossRef
58.
go back to reference Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM, Duncan SH, Stroes ESG, Groen AK, Flint HJ, et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes. 2016;2:16009.PubMedPubMedCentralCrossRef Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM, Duncan SH, Stroes ESG, Groen AK, Flint HJ, et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes. 2016;2:16009.PubMedPubMedCentralCrossRef
59.
go back to reference Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JB, Van Immerseel F, Boon N, Van de Wiele T. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe. 2014;30:70–4.PubMedCrossRef Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JB, Van Immerseel F, Boon N, Van de Wiele T. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe. 2014;30:70–4.PubMedCrossRef
60.
go back to reference Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 2021;12: 578386.PubMedPubMedCentralCrossRef Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 2021;12: 578386.PubMedPubMedCentralCrossRef
Metadata
Title
Causal relationship between gut microbiota and gastrointestinal diseases: a mendelian randomization study
Authors
Kaiwen Wu
Qiang Luo
Ye Liu
Aoshuang Li
Demeng Xia
Xiaobin Sun
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-04894-5

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine