Skip to main content
Top
Published in: Annals of Intensive Care 1/2020

Open Access 01-12-2020 | Respiratory Acidosis | Research

Physiological effects of adding ECCO2R to invasive mechanical ventilation for COPD exacerbations

Authors: J.-L. Diehl, L. Piquilloud, D. Vimpere, N. Aissaoui, E. Guerot, J. L. Augy, M. Pierrot, D. Hourton, A. Arnoux, C. Richard, J. Mancebo, A. Mercat

Published in: Annals of Intensive Care | Issue 1/2020

Login to get access

Abstract

Background

Extracorporeal CO2 removal (ECCO2R) could be a valuable additional modality for invasive mechanical ventilation (IMV) in COPD patients suffering from severe acute exacerbation (AE). We aimed to evaluate in such patients the effects of a low-to-middle extracorporeal blood flow device on both gas exchanges and dynamic hyperinflation, as well as on work of breathing (WOB) during the IMV weaning process.

Study design and methods

Open prospective interventional study in 12 deeply sedated IMV AE-COPD patients studied before and after ECCO2R initiation. Gas exchange and dynamic hyperinflation were compared after stabilization without and with ECCO2R (Hemolung, Alung, Pittsburgh, USA) combined with a specific adjustment algorithm of the respiratory rate (RR) designed to improve arterial pH. When possible, WOB with and without ECCO2R was measured at the end of the weaning process. Due to study size, results are expressed as median (IQR) and a non-parametric approach was adopted.

Results

An improvement in PaCO2, from 68 (63; 76) to 49 (46; 55) mmHg, p = 0.0005, and in pH, from 7.25 (7.23; 7.29) to 7.35 (7.32; 7.40), p = 0.0005, was observed after ECCO2R initiation and adjustment of respiratory rate, while intrinsic PEEP and Functional Residual Capacity remained unchanged, from 9.0 (7.0; 10.0) to 8.0 (5.0; 9.0) cmH2O and from 3604 (2631; 4850) to 3338 (2633; 4848) mL, p = 0.1191 and p = 0.3013, respectively. WOB measurements were possible in 5 patients, indicating near-significant higher values after stopping ECCO2R: 11.7 (7.5; 15.0) versus 22.6 (13.9; 34.7) Joules/min., p = 0.0625 and 1.1 (0.8; 1.4) versus 1.5 (0.9; 2.8) Joules/L, p = 0.0625. Three patients died in-ICU. Other patients were successfully hospital-discharged.

Conclusions

Using a formalized protocol of RR adjustment, ECCO2R permitted to effectively improve pH and diminish PaCO2 at the early phase of IMV in 12 AE-COPD patients, but not to diminish dynamic hyperinflation in the whole group. A trend toward a decrease in WOB was also observed during the weaning process.
Trial registration ClinicalTrials.gov: Identifier: NCT02586948.
Appendix
Available only for authorised users
Literature
1.
go back to reference Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379:1341–51.CrossRef Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379:1341–51.CrossRef
2.
go back to reference Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151:1799–806.CrossRef Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151:1799–806.CrossRef
3.
go back to reference Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–22.CrossRef Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–22.CrossRef
4.
go back to reference Chandra D, Stamm JA, Taylor B, Ramos RM, Satterwhite L, Krishnan JA, et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998–2008. Am J Respir Crit Care Med. 2012;185:152–9.CrossRef Chandra D, Stamm JA, Taylor B, Ramos RM, Satterwhite L, Krishnan JA, et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998–2008. Am J Respir Crit Care Med. 2012;185:152–9.CrossRef
5.
go back to reference Boyle AJ, Sklar MC, McNamee JJ, Brodie D, Slutsky AS, Brochard L, et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018;6:874–84.CrossRef Boyle AJ, Sklar MC, McNamee JJ, Brodie D, Slutsky AS, Brochard L, et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018;6:874–84.CrossRef
6.
go back to reference Morales-Quinteros L, Del Sorbo L, Artigas A. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure. Ann Intensive Care. 2019;9:79.CrossRef Morales-Quinteros L, Del Sorbo L, Artigas A. Extracorporeal carbon dioxide removal for acute hypercapnic respiratory failure. Ann Intensive Care. 2019;9:79.CrossRef
7.
go back to reference Sklar MC, Beloncle F, Katsios CM, Brochard L, Friedrich JO. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: a systematic review. Intensive Care Med. 2015;41:1752–62.CrossRef Sklar MC, Beloncle F, Katsios CM, Brochard L, Friedrich JO. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: a systematic review. Intensive Care Med. 2015;41:1752–62.CrossRef
8.
go back to reference Del Sorbo L, Pisani L, Filippini C, Fanelli V, Fasano L, Terragni P, et al. Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med. 2015;43:120–7.CrossRef Del Sorbo L, Pisani L, Filippini C, Fanelli V, Fasano L, Terragni P, et al. Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med. 2015;43:120–7.CrossRef
9.
go back to reference Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016;42:1437–44.CrossRef Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016;42:1437–44.CrossRef
10.
go back to reference Karagiannidis C, Strassmann S, Schwarz S, Merten M, Fan E, Beck J, et al. Control of respiratory drive by extracorporeal CO2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. Crit Care. 2019;23:135.CrossRef Karagiannidis C, Strassmann S, Schwarz S, Merten M, Fan E, Beck J, et al. Control of respiratory drive by extracorporeal CO2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. Crit Care. 2019;23:135.CrossRef
11.
go back to reference Burki NK, Mani RK, Herth FJF, Schmidt W, Teschler H, Bonin F, et al. A novel extracorporeal CO2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143:678–86.CrossRef Burki NK, Mani RK, Herth FJF, Schmidt W, Teschler H, Bonin F, et al. A novel extracorporeal CO2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143:678–86.CrossRef
12.
go back to reference Abrams DC, Brenner K, Burkart KM, Agerstrand CL, Thomashow BM, Bacchetta M, et al. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10:307–14.CrossRef Abrams DC, Brenner K, Burkart KM, Agerstrand CL, Thomashow BM, Bacchetta M, et al. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10:307–14.CrossRef
13.
go back to reference Roncon-Albuquerque R, Carona G, Neves A, Miranda F, Castelo-Branco S, Oliveira T, et al. Venovenous extracorporeal CO2 removal for early extubation in COPD exacerbations requiring invasive mechanical ventilation. Intensive Care Med. 2014;40:1969–70.CrossRef Roncon-Albuquerque R, Carona G, Neves A, Miranda F, Castelo-Branco S, Oliveira T, et al. Venovenous extracorporeal CO2 removal for early extubation in COPD exacerbations requiring invasive mechanical ventilation. Intensive Care Med. 2014;40:1969–70.CrossRef
14.
go back to reference Diehl J-L, Piquilloud L, Richard J-CM, Mancebo J, Mercat A. Effects of extracorporeal carbon dioxide removal on work of breathing in patients with chronic obstructive pulmonary disease. Intensive Care Med. 2016;42:951–2.CrossRef Diehl J-L, Piquilloud L, Richard J-CM, Mancebo J, Mercat A. Effects of extracorporeal carbon dioxide removal on work of breathing in patients with chronic obstructive pulmonary disease. Intensive Care Med. 2016;42:951–2.CrossRef
15.
go back to reference Pisani L, Fasano L, Corcione N, Comellini V, Guerrieri A, Ranieri MV, et al. Effects of extracorporeal CO2 removal on inspiratory effort and respiratory pattern in patients who fail weaning from mechanical ventilation. Am J Respir Crit Care Med. 2015;192:1392–4.CrossRef Pisani L, Fasano L, Corcione N, Comellini V, Guerrieri A, Ranieri MV, et al. Effects of extracorporeal CO2 removal on inspiratory effort and respiratory pattern in patients who fail weaning from mechanical ventilation. Am J Respir Crit Care Med. 2015;192:1392–4.CrossRef
16.
go back to reference Olegård C, Söndergaard S, Houltz E, Lundin S, Stenqvist O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101:206–12.CrossRef Olegård C, Söndergaard S, Houltz E, Lundin S, Stenqvist O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101:206–12.CrossRef
17.
go back to reference Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37:1595–604.CrossRef Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37:1595–604.CrossRef
18.
go back to reference Blankman P, Hasan D, Bikker IG, Gommers D. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit. Acta Anaesthesiol Scand. 2016;60:69–78.CrossRef Blankman P, Hasan D, Bikker IG, Gommers D. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit. Acta Anaesthesiol Scand. 2016;60:69–78.CrossRef
19.
go back to reference Ibañez J, Raurich JM. Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med. 1982;8:173–7.CrossRef Ibañez J, Raurich JM. Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med. 1982;8:173–7.CrossRef
20.
go back to reference Diehl J-L, Mercat A, Pesenti A. Understanding hypoxemia on ECCO2R: back to the alveolar gas equation. Intensive Care Med. 2019;45:255–6.CrossRef Diehl J-L, Mercat A, Pesenti A. Understanding hypoxemia on ECCO2R: back to the alveolar gas equation. Intensive Care Med. 2019;45:255–6.CrossRef
21.
go back to reference Kiiski R, Takala J, Kari A, Milic-Emili J. Effect of tidal volume on gas exchange and oxygen transport in the adult respiratory distress syndrome. Am Rev Respir Dis. 1992;146:1131–5.CrossRef Kiiski R, Takala J, Kari A, Milic-Emili J. Effect of tidal volume on gas exchange and oxygen transport in the adult respiratory distress syndrome. Am Rev Respir Dis. 1992;146:1131–5.CrossRef
22.
go back to reference Karagiannidis C, Kampe K, Sipmann F, Larsson A, Hedenstierna G, Windisch W, et al. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18:R124.CrossRef Karagiannidis C, Kampe K, Sipmann F, Larsson A, Hedenstierna G, Windisch W, et al. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18:R124.CrossRef
23.
go back to reference d’Andrea A, Banfi C, Bendjelid K, Giraud R. Utilisation de l’épuration extra-corporelle de dioxyde de carbone dans l’exacerbation de la maladie pulmonaire obstructive chronique: une revue narrative. Can J Anesth. 2020;67:462–74.CrossRef d’Andrea A, Banfi C, Bendjelid K, Giraud R. Utilisation de l’épuration extra-corporelle de dioxyde de carbone dans l’exacerbation de la maladie pulmonaire obstructive chronique: une revue narrative. Can J Anesth. 2020;67:462–74.CrossRef
24.
go back to reference Kalbhenn J, Neuffer N, Zieger B, Schmutz A. Is extracorporeal CO2 removal really “safe” and “less” invasive? Observation of blood injury and coagulation impairment during ECCO2R. ASAIO J. 1992;2017(63):666–71. Kalbhenn J, Neuffer N, Zieger B, Schmutz A. Is extracorporeal CO2 removal really “safe” and “less” invasive? Observation of blood injury and coagulation impairment during ECCO2R. ASAIO J. 1992;2017(63):666–71.
26.
go back to reference Combes A, Tonetti T, Fanelli V, Pham T, Pesenti A, Mancebo J, et al. Efficacy and safety of lower versus higher CO 2 extraction devices to allow ultraprotective ventilation: secondary analysis of the SUPERNOVA study. Thorax. 2019;74:1179–81.CrossRef Combes A, Tonetti T, Fanelli V, Pham T, Pesenti A, Mancebo J, et al. Efficacy and safety of lower versus higher CO 2 extraction devices to allow ultraprotective ventilation: secondary analysis of the SUPERNOVA study. Thorax. 2019;74:1179–81.CrossRef
27.
go back to reference Yang SC, Yang SP. Effects of inspiratory flow waveforms on lung mechanics, gas exchange, and respiratory metabolism in COPD patients during mechanical ventilation. Chest. 2002;122:2096–104.CrossRef Yang SC, Yang SP. Effects of inspiratory flow waveforms on lung mechanics, gas exchange, and respiratory metabolism in COPD patients during mechanical ventilation. Chest. 2002;122:2096–104.CrossRef
28.
go back to reference Augy JL, Aissaoui N, Richard C, Maury E, Fartoukh M, Mekontso-Dessap A, et al. A 2-year multicenter, observational, prospective, cohort study on extracorporeal CO2 removal in a large metropolis area. J Intensive Care. 2019;7:45.CrossRef Augy JL, Aissaoui N, Richard C, Maury E, Fartoukh M, Mekontso-Dessap A, et al. A 2-year multicenter, observational, prospective, cohort study on extracorporeal CO2 removal in a large metropolis area. J Intensive Care. 2019;7:45.CrossRef
Metadata
Title
Physiological effects of adding ECCO2R to invasive mechanical ventilation for COPD exacerbations
Authors
J.-L. Diehl
L. Piquilloud
D. Vimpere
N. Aissaoui
E. Guerot
J. L. Augy
M. Pierrot
D. Hourton
A. Arnoux
C. Richard
J. Mancebo
A. Mercat
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2020
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-00743-y

Other articles of this Issue 1/2020

Annals of Intensive Care 1/2020 Go to the issue