Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 10/2006

Open Access 01-10-2006 | Original article

Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy

Authors: Jörgen Carlsson, Veronika Eriksson, Bo Stenerlöw, Hans Lundqvist

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 10/2006

Login to get access

Abstract

Purpose

The purpose of this study was to identify combinations of dose rate and exposure time that have the potential to provide curative treatment with targeted radionuclide therapy applying low dose rate beta irradiation.

Methods

Five tumour cell lines, U-373MG and U-118MG gliomas, HT-29 colon carcinoma, A-431 cervical squamous carcinoma and SKBR-3 breast cancer, were used. An experimental model with 105 tumour cells in each sample was irradiated with low dose rate beta particles. The criterion for successful treatment was absence of recovery of cells during a follow-up period of 3 months. The initial dose rates were in the range 0.1–0.8 Gy/h, and the cells were continuously exposed for 1, 3 or 7 days. These combinations covered dose rates and doses achievable in targeted radionuclide therapy.

Results

Continuous irradiation with dose rates of 0.2–0.3 and 0.4–0.6 Gy/h for 7 and 3 days, respectively, could kill all cells in each tumour cell sample. These treatments gave total radiation doses of 30–40 Gy. However, when exposed for just 24 h with about 0.8 Gy/h, only the SKBR-3 cells were successfully treated; all the other cell types recovered. There were large cell type-dependent variations in the growth delay patterns for the cultures that recovered. The U-118MG cells were most resistant and the U-373MG and SKBR-3 cells most sensitive to the treatments. The HT-29 and A-431 cells were intermediate.

Conclusion

The results serve as a guideline for the combinations of dose rate and exposure time necessary to kill tumour cells when applying low dose rate beta irradiation. The shift from recovery to “cure” fell within a narrow range of dose rate and exposure time combinations.
Literature
1.
go back to reference Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 2003;52(5):281–296PubMed Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 2003;52(5):281–296PubMed
2.
go back to reference Wiseman GA, Leigh BR, Erwin WD, Sparks RB, Podoloff DA, Schilder RJ, et al. Radiation dosimetry results from a phase II trial of ibritumomab tiuxetan (Zevalin) radioimmunotherapy for patients with non-Hodgkin’s lymphoma and mild thrombocytopenia. Cancer Biother Radiopharm 2003;18(2):165–178CrossRefPubMed Wiseman GA, Leigh BR, Erwin WD, Sparks RB, Podoloff DA, Schilder RJ, et al. Radiation dosimetry results from a phase II trial of ibritumomab tiuxetan (Zevalin) radioimmunotherapy for patients with non-Hodgkin’s lymphoma and mild thrombocytopenia. Cancer Biother Radiopharm 2003;18(2):165–178CrossRefPubMed
3.
go back to reference Krenning EP, Kwekkeboom DJ, Valkema R, Pauwels S, Kvols LK, De Jong M. Peptide receptor radionuclide therapy. Ann N Y Acad Sci 2004;1014:234–245CrossRefPubMed Krenning EP, Kwekkeboom DJ, Valkema R, Pauwels S, Kvols LK, De Jong M. Peptide receptor radionuclide therapy. Ann N Y Acad Sci 2004;1014:234–245CrossRefPubMed
4.
go back to reference Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):92S–98SPubMed Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):92S–98SPubMed
5.
go back to reference Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):62S–66SPubMed Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):62S–66SPubMed
6.
go back to reference Hoefnagel CA. Nuclear medicine therapy of neuroblastoma. Q J Nucl Med 1999;43(4):336–343PubMed Hoefnagel CA. Nuclear medicine therapy of neuroblastoma. Q J Nucl Med 1999;43(4):336–343PubMed
7.
go back to reference Yanik GA, Levine JE, Matthay KK, Sisson JC, Shulkin BL, Shapiro B, et al. Pilot study of iodine-131I-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol 2002;20(8):2142–2149CrossRefPubMed Yanik GA, Levine JE, Matthay KK, Sisson JC, Shulkin BL, Shapiro B, et al. Pilot study of iodine-131I-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol 2002;20(8):2142–2149CrossRefPubMed
8.
go back to reference DeNardo GL, O’Donnell RT, Kroger LA, Richman CM, Goldstein DS, Shen S, et al. Strategies for developing effective radioimmunotherapy for solid tumors. Clin Cancer Res 1999;5(10 Suppl):3219s–3223sPubMed DeNardo GL, O’Donnell RT, Kroger LA, Richman CM, Goldstein DS, Shen S, et al. Strategies for developing effective radioimmunotherapy for solid tumors. Clin Cancer Res 1999;5(10 Suppl):3219s–3223sPubMed
9.
go back to reference DeNardo SJ, Williams LE, Leigh BR, Wahl RL. Choosing an optimal radioimmuno-therapy dose for clinical response. Cancer 2002;94(4 Suppl):1275–1286CrossRefPubMed DeNardo SJ, Williams LE, Leigh BR, Wahl RL. Choosing an optimal radioimmuno-therapy dose for clinical response. Cancer 2002;94(4 Suppl):1275–1286CrossRefPubMed
10.
go back to reference Carlsson J, Forssell Aronsson E, Hietala SO, Stigbrand T, Tennvall J. Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol 2003;66(2):107–117CrossRefPubMed Carlsson J, Forssell Aronsson E, Hietala SO, Stigbrand T, Tennvall J. Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol 2003;66(2):107–117CrossRefPubMed
11.
go back to reference Larson SM, Krenning EP. A pragmatic perspective on molecular targeted radionuclide therapy. J Nucl Med 2005;46(Suppl 1):1S–3SPubMed Larson SM, Krenning EP. A pragmatic perspective on molecular targeted radionuclide therapy. J Nucl Med 2005;46(Suppl 1):1S–3SPubMed
12.
go back to reference Sharkey RM, Goldenberg DM. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 2005;46(Suppl 1):115S–127SPubMed Sharkey RM, Goldenberg DM. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 2005;46(Suppl 1):115S–127SPubMed
13.
go back to reference de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):13S–17SPubMed de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005;46(Suppl 1):13S–17SPubMed
14.
go back to reference Steel GG. Basic clinical radiobiology. London: Arnold Publisher and Hodder Headline Group; 1997 Steel GG. Basic clinical radiobiology. London: Arnold Publisher and Hodder Headline Group; 1997
15.
go back to reference Hall EJ. Radiobiology for the radiologist, Chap. 5. Philadelphia: Lippincott Williams & Wilkins; 2000 Hall EJ. Radiobiology for the radiologist, Chap. 5. Philadelphia: Lippincott Williams & Wilkins; 2000
16.
go back to reference Dillehay LE, Williams JR. Radiobiology of dose-rate patterns achievable in radioimmunoglobulin therapy. Front Radiat Ther Oncol 1990;24:96–103, discussion 121–122PubMed Dillehay LE, Williams JR. Radiobiology of dose-rate patterns achievable in radioimmunoglobulin therapy. Front Radiat Ther Oncol 1990;24:96–103, discussion 121–122PubMed
17.
18.
go back to reference Murtha AD. Radiobiology of low-dose-rate radiation relevant to radioimmunotherapy. Cancer Biother Radiopharm 2000;15(1):7–14PubMedCrossRef Murtha AD. Radiobiology of low-dose-rate radiation relevant to radioimmunotherapy. Cancer Biother Radiopharm 2000;15(1):7–14PubMedCrossRef
19.
go back to reference Hernandez MC, Knox SJ. Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 2004;59(5):1274–1287CrossRefPubMed Hernandez MC, Knox SJ. Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 2004;59(5):1274–1287CrossRefPubMed
20.
go back to reference Hall EJ. Radiation dose-rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 1972;45(530):81–97PubMedCrossRef Hall EJ. Radiation dose-rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 1972;45(530):81–97PubMedCrossRef
21.
go back to reference Bedford JS, Mitchell JB. Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 1973;54(2):316–327PubMed Bedford JS, Mitchell JB. Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 1973;54(2):316–327PubMed
22.
go back to reference Mitchell JB, Bedford JS, Bailey SM. Dose-rate effects in mammalian cells in culture III. Comparison of cell killing and cell proliferation during continuous irradiation for six different cell lines. Radiat Res 1979;79(3):537–551PubMed Mitchell JB, Bedford JS, Bailey SM. Dose-rate effects in mammalian cells in culture III. Comparison of cell killing and cell proliferation during continuous irradiation for six different cell lines. Radiat Res 1979;79(3):537–551PubMed
23.
go back to reference Dillehay LE. A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division. Radiat Res 1990;124(2):201–207PubMed Dillehay LE. A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division. Radiat Res 1990;124(2):201–207PubMed
24.
go back to reference Wong JY, Williams LE, Demidecki AJ, Wessels BW, Yan XW. Radiobiologic studies comparing yttrium-90 irradiation and external beam irradiation in vitro. Int J Radiat Oncol Biol Phys 1991;20(4):715–722PubMed Wong JY, Williams LE, Demidecki AJ, Wessels BW, Yan XW. Radiobiologic studies comparing yttrium-90 irradiation and external beam irradiation in vitro. Int J Radiat Oncol Biol Phys 1991;20(4):715–722PubMed
25.
go back to reference Hartman T, Lundqvist H, Westlin JE, Carlsson J. Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with 131I labelled ligands or antibodies. Int J Radiat Oncol Biol Phys 2000;46(4):1025–1036CrossRefPubMed Hartman T, Lundqvist H, Westlin JE, Carlsson J. Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with 131I labelled ligands or antibodies. Int J Radiat Oncol Biol Phys 2000;46(4):1025–1036CrossRefPubMed
26.
go back to reference Howell RW, Neti PV. Modeling multicellular response to nonuniform distributions of radioactivity: differences in cellular response to self-dose and cross-dose. Radiat Res 2005;163(2):216–221PubMedCrossRef Howell RW, Neti PV. Modeling multicellular response to nonuniform distributions of radioactivity: differences in cellular response to self-dose and cross-dose. Radiat Res 2005;163(2):216–221PubMedCrossRef
27.
go back to reference Howell RW, Goddu SM, Rao DV. Design and performance characteristics of an experimental cesium-137 irradiator to simulate internal radionuclide dose rate patterns. J Nucl Med 1997;38(5):727–731PubMed Howell RW, Goddu SM, Rao DV. Design and performance characteristics of an experimental cesium-137 irradiator to simulate internal radionuclide dose rate patterns. J Nucl Med 1997;38(5):727–731PubMed
28.
go back to reference Joiner MC, Marples B, Lambin P, Short SC, Turesson I. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 2001;49(2):379–389CrossRefPubMed Joiner MC, Marples B, Lambin P, Short SC, Turesson I. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 2001;49(2):379–389CrossRefPubMed
29.
go back to reference Mitchell CR, Folkard M, Joiner MC. Effects of exposure to low-dose-rate 60Co gamma rays on human tumor cells in vitro. Radiat Res 2002;158(3):311–318PubMedCrossRef Mitchell CR, Folkard M, Joiner MC. Effects of exposure to low-dose-rate 60Co gamma rays on human tumor cells in vitro. Radiat Res 2002;158(3):311–318PubMedCrossRef
30.
go back to reference Prise KM, Folkard M, Michael BD. A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry 2003;104(4):347–355PubMed Prise KM, Folkard M, Michael BD. A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry 2003;104(4):347–355PubMed
32.
go back to reference Mothersill C, Seymour CB. Radiation-induced bystander effects—implications for cancer. Nat Rev Cancer 2004;4(2):158–164PubMed Mothersill C, Seymour CB. Radiation-induced bystander effects—implications for cancer. Nat Rev Cancer 2004;4(2):158–164PubMed
33.
go back to reference Mirzaie-Joniani H, Eriksson D, Johansson A, Lofroth PO, Johansson L, Ahlstrom KR, et al. Apoptosis in HeLa Hep2 cells is induced by low-dose, low-dose-rate radiation. Radiat Res 2002;158(5):634–640PubMedCrossRef Mirzaie-Joniani H, Eriksson D, Johansson A, Lofroth PO, Johansson L, Ahlstrom KR, et al. Apoptosis in HeLa Hep2 cells is induced by low-dose, low-dose-rate radiation. Radiat Res 2002;158(5):634–640PubMedCrossRef
34.
go back to reference Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T. Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 2002;94(4 Suppl):1210–1214CrossRefPubMed Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T. Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 2002;94(4 Suppl):1210–1214CrossRefPubMed
35.
go back to reference Carlsson J, Hakansson E, Eriksson V, Grawe J, Wester K, Grusell E, et al. Early effects of low dose-rate radiation on cultured tumor cells. Cancer Biother Radiopharm 2003;18(4):663–670CrossRefPubMed Carlsson J, Hakansson E, Eriksson V, Grawe J, Wester K, Grusell E, et al. Early effects of low dose-rate radiation on cultured tumor cells. Cancer Biother Radiopharm 2003;18(4):663–670CrossRefPubMed
36.
go back to reference Nilsson B, Montelius A. Fluence perturbation in photon beams under nonequilibrium conditions. Med Phys 1986;13(2):191–195CrossRefPubMed Nilsson B, Montelius A. Fluence perturbation in photon beams under nonequilibrium conditions. Med Phys 1986;13(2):191–195CrossRefPubMed
37.
go back to reference Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel 2004;17(5):455–462CrossRefPubMed Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel 2004;17(5):455–462CrossRefPubMed
38.
go back to reference Steffen AC, Wikman M, Tolmachev V, Adams GP, Nilsson FY, Stahl S, et al. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics. Cancer Biother Radiopharm 2005;20(3):239–248CrossRefPubMed Steffen AC, Wikman M, Tolmachev V, Adams GP, Nilsson FY, Stahl S, et al. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics. Cancer Biother Radiopharm 2005;20(3):239–248CrossRefPubMed
39.
go back to reference Sundberg AL, Almqvist Y, Orlova A, Blomquist E, Jensen HJ, Gedda L, et al. Combined effect of gefitinib (‘Iressa’, ZD1839) and targeted radiotherapy with 211At-EGF. Eur J Nucl Med Mol Imaging 2003;30(10):1348–1356CrossRefPubMed Sundberg AL, Almqvist Y, Orlova A, Blomquist E, Jensen HJ, Gedda L, et al. Combined effect of gefitinib (‘Iressa’, ZD1839) and targeted radiotherapy with 211At-EGF. Eur J Nucl Med Mol Imaging 2003;30(10):1348–1356CrossRefPubMed
40.
go back to reference Nordberg E, Steffen AC, Persson M, Sundberg AL, Carlsson J, Glimelius B. Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor. Eur J Nucl Med Mol Imaging 2005;32(7):771–777CrossRefPubMed Nordberg E, Steffen AC, Persson M, Sundberg AL, Carlsson J, Glimelius B. Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor. Eur J Nucl Med Mol Imaging 2005;32(7):771–777CrossRefPubMed
41.
go back to reference Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, et al. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 1988;48(14):3910–3918PubMed Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, et al. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 1988;48(14):3910–3918PubMed
42.
go back to reference Marin LA, Smith CE, Langston MY, Quashie D, Dillehay LE. Response of glioblastoma cell lines to low dose rate irradiation. Int J Radiat Oncol Biol Phys 1991;21(2):397–402PubMed Marin LA, Smith CE, Langston MY, Quashie D, Dillehay LE. Response of glioblastoma cell lines to low dose rate irradiation. Int J Radiat Oncol Biol Phys 1991;21(2):397–402PubMed
43.
go back to reference Zalutsky MR. Current status of therapy of solid tumors: brain tumor therapy. J Nucl Med 2005;46(Suppl 1):151S–156SPubMed Zalutsky MR. Current status of therapy of solid tumors: brain tumor therapy. J Nucl Med 2005;46(Suppl 1):151S–156SPubMed
44.
go back to reference Essand M, Gronvik C, Hartman T, Carlsson J. Radioimmunotherapy of prostatic adenocarcinomas: effects of 131I-labelled E4 antibodies on cells at different depth in DU 145 spheroids. Int J Cancer 1995;63(3):387–394PubMed Essand M, Gronvik C, Hartman T, Carlsson J. Radioimmunotherapy of prostatic adenocarcinomas: effects of 131I-labelled E4 antibodies on cells at different depth in DU 145 spheroids. Int J Cancer 1995;63(3):387–394PubMed
45.
go back to reference Sundberg AL, Blomquist E, Carlsson J, Steffen AC, Gedda L. Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 2003;30(3):303–315CrossRefPubMed Sundberg AL, Blomquist E, Carlsson J, Steffen AC, Gedda L. Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 2003;30(3):303–315CrossRefPubMed
46.
go back to reference O’Donoghue JA, Bardies M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 1995;36(10):1902–1909PubMed O’Donoghue JA, Bardies M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 1995;36(10):1902–1909PubMed
47.
go back to reference Nilsson S, Carlsson J, Larsson B, Ponten J. Survival of irradiated glia and glioma cells studied with a new cloning technique. Int J Radiat Biol Relat Stud Phys Chem Med 1980;37(3):267–279PubMed Nilsson S, Carlsson J, Larsson B, Ponten J. Survival of irradiated glia and glioma cells studied with a new cloning technique. Int J Radiat Biol Relat Stud Phys Chem Med 1980;37(3):267–279PubMed
48.
go back to reference Skarsgard LD, Skwarchuk MW, Wouters BG, Durand RE. Substructure in the radiation survival response at low dose in cells of human tumor cell lines. Radiat Res 1996;146(4):388–398PubMed Skarsgard LD, Skwarchuk MW, Wouters BG, Durand RE. Substructure in the radiation survival response at low dose in cells of human tumor cell lines. Radiat Res 1996;146(4):388–398PubMed
49.
go back to reference Short SC, Mitchell SA, Boulton P, Woodcock M, Joiner MC. The response of human glioma cell lines to low-dose radiation exposure. Int J Radiat Biol 1999;75(11):1341–1348CrossRefPubMed Short SC, Mitchell SA, Boulton P, Woodcock M, Joiner MC. The response of human glioma cell lines to low-dose radiation exposure. Int J Radiat Biol 1999;75(11):1341–1348CrossRefPubMed
50.
go back to reference Fertil B, Malaise EP. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys 1981;7(5):621–629PubMed Fertil B, Malaise EP. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys 1981;7(5):621–629PubMed
51.
go back to reference Deacon J, Peckham MJ, Steel GG. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 1984;2(4):317–323PubMed Deacon J, Peckham MJ, Steel GG. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol 1984;2(4):317–323PubMed
52.
go back to reference Frykholm G, Glimelius B, Richter S, Carlsson J. Heterogeneity in antigenic expression and radiosensitivity in human colon carcinoma cell lines. In Vitro Cell Dev Biol 1991;27A(12):900–906PubMed Frykholm G, Glimelius B, Richter S, Carlsson J. Heterogeneity in antigenic expression and radiosensitivity in human colon carcinoma cell lines. In Vitro Cell Dev Biol 1991;27A(12):900–906PubMed
53.
go back to reference Warenius HM, Browning PG, Britten RA, Peacock JA, Rapp UR. C-raf-1 proto-oncogene expression relates to radiosensitivity rather than radioresistance. Eur J Cancer 1994;30A(3):369–375CrossRefPubMed Warenius HM, Browning PG, Britten RA, Peacock JA, Rapp UR. C-raf-1 proto-oncogene expression relates to radiosensitivity rather than radioresistance. Eur J Cancer 1994;30A(3):369–375CrossRefPubMed
54.
go back to reference Wouters BG, Sy AM, Skarsgard LD. Low-dose hypersensitivity and increased radioresistance in a panel of human tumor cell lines with different radiosensitivity. Radiat Res 1996;146(4):399–413PubMed Wouters BG, Sy AM, Skarsgard LD. Low-dose hypersensitivity and increased radioresistance in a panel of human tumor cell lines with different radiosensitivity. Radiat Res 1996;146(4):399–413PubMed
55.
go back to reference Deschavanne PJ, Fertil B. A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 1996;34(1):251–266CrossRefPubMed Deschavanne PJ, Fertil B. A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 1996;34(1):251–266CrossRefPubMed
56.
go back to reference Chapman JD. Single-hit mechanism of tumour cell killing by radiation. Int J Radiat Biol 2003;79(2):71–81PubMed Chapman JD. Single-hit mechanism of tumour cell killing by radiation. Int J Radiat Biol 2003;79(2):71–81PubMed
57.
go back to reference Verwijnen S, Capello A, Bernard B, van den Aardweg G, Konijnenberg M, Breeman W, et al. Low-dose-rate irradiation by 131I versus high-dose-rate external-beam irradiation in the rat pancreatic tumor cell line CA20948. Cancer Biother Radiopharm 2004;19(3):285–292CrossRefPubMed Verwijnen S, Capello A, Bernard B, van den Aardweg G, Konijnenberg M, Breeman W, et al. Low-dose-rate irradiation by 131I versus high-dose-rate external-beam irradiation in the rat pancreatic tumor cell line CA20948. Cancer Biother Radiopharm 2004;19(3):285–292CrossRefPubMed
58.
go back to reference Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 2004;279(48):49624–49632CrossRefPubMed Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 2004;279(48):49624–49632CrossRefPubMed
Metadata
Title
Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy
Authors
Jörgen Carlsson
Veronika Eriksson
Bo Stenerlöw
Hans Lundqvist
Publication date
01-10-2006
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 10/2006
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0109-3

Other articles of this Issue 10/2006

European Journal of Nuclear Medicine and Molecular Imaging 10/2006 Go to the issue