Skip to main content
Top
Published in: BMC Pediatrics 1/2020

Open Access 01-12-2020 | Research article

Reproducibility and inter-observer agreement of Greulich-Pyle protocol to estimate skeletal age among female adolescent soccer players

Authors: Yuri V. Faustino-da-Silva, Diogo V. Martinho, Manuel J. Coelho-e-Silva, João Valente-dos-Santos, Jorge Conde, Tomás G. Oliveira, Enio R. V. Ronque, Ricardo R. Agostinete, Rômulo A. Fernandes, Lauren B. Sherar

Published in: BMC Pediatrics | Issue 1/2020

Login to get access

Abstract

Background

Skeletal age (SA) is considered the best method of assessing biological maturation. The aim of this study was to determine intra-observer (reproducibility) and inter-observer agreement of SA values obtained via the Greulich-Pyle (GP) method. In addition, the variation in calculated SAs by alternative GP protocols was examined.

Methods

The sample was composed of 100 Portuguese female soccer players aged 12.0–16.7 years. SAs were determined using the GP method by two observers (OB1: experience < 100 exams using GP; OB2: experience > 2000 exams using several methods). The radiographs were examined using alternative GP protocols: (wholeGP) the plate was matched to the atlas as an overall approach; (30-boneGP) bone-by-bone inspections of 30-bones; (GPpmb) bone-by-bone inspections of the pre-mature bones only. For the 30-boneGP and GPpmb approaches, SA was calculated via the mean (M) and the median (Md).

Results

Reproducibility ranged 82–100% and 88–100% for OB1 and OB2, respectively. Inter-observer agreement (100 participants multiplied by 30 bones) was 92.1%. For specific bones, agreement rates less than 90% were found for scaphoid (81%), medial phalange V (83%), trapezium (84%) and metacarpal V (87%). Differences in wholeGP SAs obtained by the two observers were moderate (d-cohen was 0.79). Mean differences between observers when using bone-by bone SAs were trivial (30-boneGP: d-cohen less than 0.05; GPpmb: d-cohen less than 0.10). The impact of using the mean or the median was negligible, particularly when analyses did not include bones scored as mature.

Conclusion

The GP appeared to be a reasonably reproducible method to assess SA and inter-observer agreement was acceptable. There is evidence to support a recommendation of only scoring pre-mature bones during later adolescence. Further research is required to examine whether these findings are consistent in younger girls and in boys.
Appendix
Available only for authorised users
Literature
1.
go back to reference Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. 2nd ed. Champaign: Human Kinetics; 2004.CrossRef Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. 2nd ed. Champaign: Human Kinetics; 2004.CrossRef
2.
go back to reference Coelho-e-Silva M, Figueiredo AJ, Carvalho HM, Malina RM. Functional capacities and sport-specific skills of 14- to 15-year-old male basketball players: size and maturity effects. Eur J Sport Sci. 2008;8:277–85.CrossRef Coelho-e-Silva M, Figueiredo AJ, Carvalho HM, Malina RM. Functional capacities and sport-specific skills of 14- to 15-year-old male basketball players: size and maturity effects. Eur J Sport Sci. 2008;8:277–85.CrossRef
3.
go back to reference Coelho-e-Silva M, Carvalho HM, Goncalves CE, Figueiredo AJ, Elferink-Gemser MT, Philippaerts RM, et al. Growth, maturation, functional capacities and sport-specific skills in 12-13 year-old- basketball players. J Sports Med Phys Fitness. 2010;50:174–81. Coelho-e-Silva M, Carvalho HM, Goncalves CE, Figueiredo AJ, Elferink-Gemser MT, Philippaerts RM, et al. Growth, maturation, functional capacities and sport-specific skills in 12-13 year-old- basketball players. J Sports Med Phys Fitness. 2010;50:174–81.
4.
go back to reference Malina RM, Cumming SP, Kontos AP, Eisenmann JC, Ribeiro B, Aroso J. Maturity-associated variation in sport-specific skills of youth soccer players aged 13-15 years. J Sports Sci. 2005;23:515–22.CrossRef Malina RM, Cumming SP, Kontos AP, Eisenmann JC, Ribeiro B, Aroso J. Maturity-associated variation in sport-specific skills of youth soccer players aged 13-15 years. J Sports Sci. 2005;23:515–22.CrossRef
5.
go back to reference Malina RM, Cumming SP, Rogol AD, Coelho-E-Silva M, Figueiredo AJ, Konarski JM, et al. Bio-banding in youth sports: background, concept, and application. Sports Med. 2019;49(11):1671–85.CrossRefPubMed Malina RM, Cumming SP, Rogol AD, Coelho-E-Silva M, Figueiredo AJ, Konarski JM, et al. Bio-banding in youth sports: background, concept, and application. Sports Med. 2019;49(11):1671–85.CrossRefPubMed
6.
go back to reference Malina RM, Morano PJ, Barron M, Miller SJ, Cumming SP, Kontos AP. Incidence and player risk factors for injury in youth football. Clin J Sport. 2006;16:214–22.CrossRef Malina RM, Morano PJ, Barron M, Miller SJ, Cumming SP, Kontos AP. Incidence and player risk factors for injury in youth football. Clin J Sport. 2006;16:214–22.CrossRef
7.
go back to reference van der Sluis A, Elferink-Gemser MT, Coelho-e-Silva M, Nijboer JA, Brink MS, Visscher C. Sport injuries aligned to peak height velocity in talented pubertal soccer players. Int J Sports Med. 2014;35:351–5.PubMed van der Sluis A, Elferink-Gemser MT, Coelho-e-Silva M, Nijboer JA, Brink MS, Visscher C. Sport injuries aligned to peak height velocity in talented pubertal soccer players. Int J Sports Med. 2014;35:351–5.PubMed
8.
go back to reference Le Gall F, Carling C, Reilly T. Biological maturity and injury in elite youth football. Scand J Med Sci Sports. 2007;17:564–72.PubMed Le Gall F, Carling C, Reilly T. Biological maturity and injury in elite youth football. Scand J Med Sci Sports. 2007;17:564–72.PubMed
9.
go back to reference Coelho-e-Silva M, Figueiredo AJ, Simoes F, Seabra A, Natal A, Vaeyens R, et al. Discrimination of u-14 soccer players by level and position. Int J Sports Med. 2010;31:790–6.CrossRefPubMed Coelho-e-Silva M, Figueiredo AJ, Simoes F, Seabra A, Natal A, Vaeyens R, et al. Discrimination of u-14 soccer players by level and position. Int J Sports Med. 2010;31:790–6.CrossRefPubMed
10.
go back to reference Figueiredo AJ, Goncalves CE, Coelho-e-Silva M, Malina RM. Youth soccer players, 11-14 years: maturity, size, function, skill and goal orientation. Ann Hum Biol. 2009;36:60–73.CrossRefPubMed Figueiredo AJ, Goncalves CE, Coelho-e-Silva M, Malina RM. Youth soccer players, 11-14 years: maturity, size, function, skill and goal orientation. Ann Hum Biol. 2009;36:60–73.CrossRefPubMed
11.
go back to reference Coelho-e-Silva M, Vaz V, Simoes F, Carvalho HM, Valente-dos-Santos J, Figueiredo AJ, et al. Sport selection in under-17 male roller hockey. J Sports Sci. 2012;30:1793–802.CrossRefPubMed Coelho-e-Silva M, Vaz V, Simoes F, Carvalho HM, Valente-dos-Santos J, Figueiredo AJ, et al. Sport selection in under-17 male roller hockey. J Sports Sci. 2012;30:1793–802.CrossRefPubMed
12.
go back to reference Malina RM, Pena Reyes ME, Eisenmann JC, Horta L, Rodrigues J, Miller R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11-16 years. J Sports Sci. 2000;18:685–93.CrossRefPubMed Malina RM, Pena Reyes ME, Eisenmann JC, Horta L, Rodrigues J, Miller R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11-16 years. J Sports Sci. 2000;18:685–93.CrossRefPubMed
13.
go back to reference Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stantford: Stantford Univeristiy Press; 1959. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stantford: Stantford Univeristiy Press; 1959.
14.
go back to reference Fortes CMT, Goldberg TBL, Kurokawa CS, Silva CC, Moretto MR, Biason TP, et al. Relationship between chronological and bone ages and pubertal stage of breasts with bone biomarkers and bone mineral density in adolescents. J Pediatr. 2014;90:624–31.CrossRef Fortes CMT, Goldberg TBL, Kurokawa CS, Silva CC, Moretto MR, Biason TP, et al. Relationship between chronological and bone ages and pubertal stage of breasts with bone biomarkers and bone mineral density in adolescents. J Pediatr. 2014;90:624–31.CrossRef
15.
go back to reference Gouvea M, Cyrino ES, Ribeiro AS, da Silva DRP, Ohara D, Valente-dos-Santos J, et al. Influence of skeletal maturity on size, function and sport-specific technical skills in youth soccer players. Int J Sports Med. 2016;37:464–9.CrossRefPubMed Gouvea M, Cyrino ES, Ribeiro AS, da Silva DRP, Ohara D, Valente-dos-Santos J, et al. Influence of skeletal maturity on size, function and sport-specific technical skills in youth soccer players. Int J Sports Med. 2016;37:464–9.CrossRefPubMed
16.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.CrossRefPubMed Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.CrossRefPubMed
17.
go back to reference Roche AF, Davila GH. The reliability of assessments of the maturity of individual hand-wrist bones. Hum Biol. 1976;48:585–97.PubMed Roche AF, Davila GH. The reliability of assessments of the maturity of individual hand-wrist bones. Hum Biol. 1976;48:585–97.PubMed
18.
go back to reference Tanner JM, Healy MJR, Goldstein H, Cameron N. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London: Saunders; 2001. Tanner JM, Healy MJR, Goldstein H, Cameron N. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London: Saunders; 2001.
20.
21.
go back to reference Malina RM, Rogol AD, Cumming SP, Coelho-e-Silva M, Figueiredo AJ. Biological maturation of youth athletes: assessment and implications. Br J Sports Med. 2015;49:852–9.CrossRefPubMed Malina RM, Rogol AD, Cumming SP, Coelho-e-Silva M, Figueiredo AJ. Biological maturation of youth athletes: assessment and implications. Br J Sports Med. 2015;49:852–9.CrossRefPubMed
22.
go back to reference Roche AF, Johnson JM. A comparison between methods of calculating skeletal age (Greulich-Pyle). Am J Phys Anthropol. 1969;30:221–9.CrossRefPubMed Roche AF, Johnson JM. A comparison between methods of calculating skeletal age (Greulich-Pyle). Am J Phys Anthropol. 1969;30:221–9.CrossRefPubMed
23.
go back to reference Roche AF, Chumlea W, Thissen D. Assessing the skeletal maturity of the hand-wrist: Fels method. Springfield: Charles C Thomas; 1988. Roche AF, Chumlea W, Thissen D. Assessing the skeletal maturity of the hand-wrist: Fels method. Springfield: Charles C Thomas; 1988.
24.
go back to reference Todd TW. Atlas of skeletal maturation. St. Louis: Mosby; 1937. Todd TW. Atlas of skeletal maturation. St. Louis: Mosby; 1937.
Metadata
Title
Reproducibility and inter-observer agreement of Greulich-Pyle protocol to estimate skeletal age among female adolescent soccer players
Authors
Yuri V. Faustino-da-Silva
Diogo V. Martinho
Manuel J. Coelho-e-Silva
João Valente-dos-Santos
Jorge Conde
Tomás G. Oliveira
Enio R. V. Ronque
Ricardo R. Agostinete
Rômulo A. Fernandes
Lauren B. Sherar
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2020
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02383-4

Other articles of this Issue 1/2020

BMC Pediatrics 1/2020 Go to the issue