Skip to main content
Top
Published in: Tumor Biology 6/2014

01-06-2014 | Review

Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery

Authors: Mihaela Aldea, Lucian Craciun, Ciprian Tomuleasa, Ioana Berindan-Neagoe, Gabriel Kacso, Ioan Stefan Florian, Carmen Crivii

Published in: Tumor Biology | Issue 6/2014

Login to get access

Abstract

After sitting many years on the shelves of drug stores as a harmless antidiabetic drug, metformin comes back in the spotlight of the scientific community as a surprisingly effective antineoplastic drug. Metformin targets multiple pathways that play pivotal roles in cancer progression, impacting various cellular processes, such as proliferation, cell death, metabolism, and even the cancer stemness features. The biomolecular characteristics of tumors, such as appropriate expression of organic cation transporters or genetic alterations including p53, K-ras, LKB1, and PI3K may impact metformin’s anticancer efficiency. This could indicate a need for tumor genetic profiling in order to identify patients most likely to benefit from metformin treatment. Considering that the majority of experimental models suggest that higher, supra-clinical doses of metformin should be used in order to obtain an antineoplastic effect, new ways of drug delivery could be developed, such as metformin-loaded nanoparticles or incorporation of metformin into microparticles used in transarterial chemoembolization, with the aim of obtaining higher intratumoral drug concentrations and a targeted therapy which will ultimately maximize metformin’s efficacy.
Literature
2.
go back to reference Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism: Clinical and Experimental. 2013;62(7):922–34. doi:10.1016/j.metabol.2013.01.014. Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism: Clinical and Experimental. 2013;62(7):922–34. doi:10.​1016/​j.​metabol.​2013.​01.​014.
3.
go back to reference Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP, et al. Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia. 2012;55(10):2593–603. doi:10.1007/s00125-012-2653-7.PubMed Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP, et al. Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia. 2012;55(10):2593–603. doi:10.​1007/​s00125-012-2653-7.PubMed
5.
go back to reference Garrett CR, Hassabo HM, Bhadkamkar NA, Wen S, Baladandayuthapani V, Kee BK, et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer Suppl. 2012;106(8):1374–8. doi:10.1038/bjc.2012.71. Garrett CR, Hassabo HM, Bhadkamkar NA, Wen S, Baladandayuthapani V, Kee BK, et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer Suppl. 2012;106(8):1374–8. doi:10.​1038/​bjc.​2012.​71.
6.
go back to reference Lee JH, Kim TI, Jeon SM, Hong SP, Cheon JH, Kim WH. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int J Cancer. 2012;131(3):752–9. doi:10.1002/ijc.26421.PubMed Lee JH, Kim TI, Jeon SM, Hong SP, Cheon JH, Kim WH. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int J Cancer. 2012;131(3):752–9. doi:10.​1002/​ijc.​26421.PubMed
7.
go back to reference Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. Ital J Gastroenterol Hepatol. 2011;26(5):858–65. doi:10.1111/j.1440-1746.2011.06664.x. Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. Ital J Gastroenterol Hepatol. 2011;26(5):858–65. doi:10.​1111/​j.​1440-1746.​2011.​06664.​x.
8.
go back to reference Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35(2):299–304. doi:10.2337/dc11-1313.PubMedCentralPubMed Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35(2):299–304. doi:10.​2337/​dc11-1313.PubMedCentralPubMed
9.
go back to reference Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2012;18(10):2905–12. doi:10.1158/1078-0432.CCR-11-2994. Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2012;18(10):2905–12. doi:10.​1158/​1078-0432.​CCR-11-2994.
10.
go back to reference He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol : official journal of the European Society for Medical Oncology / ESMO. 2012;23(7):1771–80. doi:10.1093/annonc/mdr534. He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol : official journal of the European Society for Medical Oncology / ESMO. 2012;23(7):1771–80. doi:10.​1093/​annonc/​mdr534.
11.
go back to reference Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118(5):1202–11. doi:10.1002/cncr.26439.PubMedCentralPubMed Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118(5):1202–11. doi:10.​1002/​cncr.​26439.PubMedCentralPubMed
12.
go back to reference He XX, Tu SM, Lee MH, Yeung SC. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol: official journal of the European Society for Medical Oncology / ESMO. 2011;22(12):2640–5. doi:10.1093/annonc/mdr020. He XX, Tu SM, Lee MH, Yeung SC. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol: official journal of the European Society for Medical Oncology / ESMO. 2011;22(12):2640–5. doi:10.​1093/​annonc/​mdr020.
15.
go back to reference Tan BX, Yao WX, Ge J, Peng XC, Du XB, Zhang R, et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer. 2011;117(22):5103–11. doi:10.1002/cncr.26151.PubMed Tan BX, Yao WX, Ge J, Peng XC, Du XB, Zhang R, et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer. 2011;117(22):5103–11. doi:10.​1002/​cncr.​26151.PubMed
16.
go back to reference Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol: official journal of the American Society of Clinical Oncology. 2002;20(1):42–51. Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol: official journal of the American Society of Clinical Oncology. 2002;20(1):42–51.
17.
go back to reference Pollak M, Chapman J, Shepherd L, Meng D, Richardson P, Wilson C et al. Insulin resistance, estimated by serum C-peptide level, is associated with reduced event-free survival for postmenopausal women in NCIC CTG MA. 14 adjuvant breast cancer trial. J Clin Oncol 2006; 24: Abstract 524 Pollak M, Chapman J, Shepherd L, Meng D, Richardson P, Wilson C et al. Insulin resistance, estimated by serum C-peptide level, is associated with reduced event-free survival for postmenopausal women in NCIC CTG MA. 14 adjuvant breast cancer trial. J Clin Oncol 2006; 24: Abstract 524
18.
go back to reference Irwin ML, Duggan C, Wang CY, Smith AW, McTiernan A, Baumgartner RN, et al. Fasting C-peptide levels and death resulting from all causes and breast cancer: the health, eating, activity, and lifestyle study. J Clin Oncol: Official Journal of the American Society of Clinical Oncology. 2011;29(1):47–53. doi:10.1200/JCO.2010.28.4752. Irwin ML, Duggan C, Wang CY, Smith AW, McTiernan A, Baumgartner RN, et al. Fasting C-peptide levels and death resulting from all causes and breast cancer: the health, eating, activity, and lifestyle study. J Clin Oncol: Official Journal of the American Society of Clinical Oncology. 2011;29(1):47–53. doi:10.​1200/​JCO.​2010.​28.​4752.
24.
go back to reference Liao H, Zhou Q, Gu Y, Duan T, Feng Y. Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep. 2012;27(6):1873–8. doi:10.3892/or.2012.1745.PubMed Liao H, Zhou Q, Gu Y, Duan T, Feng Y. Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep. 2012;27(6):1873–8. doi:10.​3892/​or.​2012.​1745.PubMed
25.
go back to reference Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res. 2013;45(5):387–90. doi:10.1055/s-0032-1331204.PubMed Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res. 2013;45(5):387–90. doi:10.​1055/​s-0032-1331204.PubMed
27.
go back to reference Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, et al. Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle. 2011;10(24):4208–16. doi:10.4161/cc.10.24.18487.PubMedCentralPubMed Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, et al. Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle. 2011;10(24):4208–16. doi:10.​4161/​cc.​10.​24.​18487.PubMedCentralPubMed
28.
go back to reference Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10(23):4047–64. doi:10.4161/cc.10.23.18151.PubMedCentralPubMed Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10(23):4047–64. doi:10.​4161/​cc.​10.​23.​18151.PubMedCentralPubMed
29.
go back to reference Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death & Disease. 2011;2:e199. doi:10.1038/cddis.2011.86. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death & Disease. 2011;2:e199. doi:10.​1038/​cddis.​2011.​86.
30.
go back to reference Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death & Disease. 2012;3:e275. doi:10.1038/cddis.2012.13. Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death & Disease. 2012;3:e275. doi:10.​1038/​cddis.​2012.​13.
31.
go back to reference Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008;283(7):3979–87. doi:10.1074/jbc.M705232200.PubMed Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008;283(7):3979–87. doi:10.​1074/​jbc.​M705232200.PubMed
36.
41.
go back to reference Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, et al. Metformin-induced preferential killing of breast cancer initiating CD44 + CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget. 2012;3(4):395–8.PubMedCentralPubMed Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, et al. Metformin-induced preferential killing of breast cancer initiating CD44 + CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget. 2012;3(4):395–8.PubMedCentralPubMed
43.
go back to reference Wurth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle. 2013;12(1):145–56. doi:10.4161/cc.23050.PubMedCentralPubMed Wurth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle. 2013;12(1):145–56. doi:10.​4161/​cc.​23050.PubMedCentralPubMed
44.
go back to reference Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104(41):16158–63. doi:10.1073/pnas.0702596104.PubMedCentralPubMed Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104(41):16158–63. doi:10.​1073/​pnas.​0702596104.PubMedCentralPubMed
45.
go back to reference Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle. 2011;10(8):1271–86. doi:10.4161/cc.10.8.15330.PubMedCentralPubMed Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle. 2011;10(8):1271–86. doi:10.​4161/​cc.​10.​8.​15330.PubMedCentralPubMed
46.
go back to reference Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Canc Prev Res. 2012;5(3):355–64. doi:10.1158/1940-6207.CAPR-11-0299. Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Canc Prev Res. 2012;5(3):355–64. doi:10.​1158/​1940-6207.​CAPR-11-0299.
50.
go back to reference Bose D, Zimmerman LJ, Pierobon M, Petricoin E, Tozzi F, Parikh A, et al. Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br J Cancer. 2011;105(11):1759–67. doi:10.1038/bjc.2011.449.PubMedCentralPubMed Bose D, Zimmerman LJ, Pierobon M, Petricoin E, Tozzi F, Parikh A, et al. Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br J Cancer. 2011;105(11):1759–67. doi:10.​1038/​bjc.​2011.​449.PubMedCentralPubMed
51.
go back to reference Soritau O, Tomuleasa C, Aldea M, Petrushev B, Susman S, Gheban D, et al. Metformin plus temozolomide-based chemotherapy as adjuvant treatment for WHO grade III and IV malignant gliomas. J BUON : Official Journal of the Balkan Union of Oncology. 2011;16(2):282–9. Soritau O, Tomuleasa C, Aldea M, Petrushev B, Susman S, Gheban D, et al. Metformin plus temozolomide-based chemotherapy as adjuvant treatment for WHO grade III and IV malignant gliomas. J BUON : Official Journal of the Balkan Union of Oncology. 2011;16(2):282–9.
53.
go back to reference Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243–53.PubMed Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243–53.PubMed
54.
56.
go back to reference Patel H, Younis RH, Ord RA, Basile JR, Schneider A. Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin. J Oral Pathol Med : Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2013;42(3):250–6. doi:10.1111/j.1600-0714.2012.01196.x. Patel H, Younis RH, Ord RA, Basile JR, Schneider A. Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin. J Oral Pathol Med : Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2013;42(3):250–6. doi:10.​1111/​j.​1600-0714.​2012.​01196.​x.
57.
go back to reference Lozano E, Herraez E, Briz O, Robledo VS, Hernandez-Iglesias J, Gonzalez-Hernandez A, et al. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. BioMed Res Int. 2013;2013:692071. doi:10.1155/2013/692071.PubMedCentralPubMed Lozano E, Herraez E, Briz O, Robledo VS, Hernandez-Iglesias J, Gonzalez-Hernandez A, et al. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. BioMed Res Int. 2013;2013:692071. doi:10.​1155/​2013/​692071.PubMedCentralPubMed
58.
go back to reference Yang J, Kalogerou M, Gallacher J, Sampson JR, Shen MH. Renal tumours in a Tsc1+/- mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin. Eur J Cancer. 2013;49(6):1479–90. doi:10.1016/j.ejca.2012.10.027.PubMed Yang J, Kalogerou M, Gallacher J, Sampson JR, Shen MH. Renal tumours in a Tsc1+/- mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin. Eur J Cancer. 2013;49(6):1479–90. doi:10.​1016/​j.​ejca.​2012.​10.​027.PubMed
60.
go back to reference Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.PubMed Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.PubMed
61.
go back to reference Soussi T, Beroud C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat. 2003;21(3):192–200. doi:10.1002/humu.10189.PubMed Soussi T, Beroud C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat. 2003;21(3):192–200. doi:10.​1002/​humu.​10189.PubMed
62.
go back to reference Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117(2):326–36. doi:10.1172/JCI28833.PubMedCentralPubMed Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117(2):326–36. doi:10.​1172/​JCI28833.PubMedCentralPubMed
63.
go back to reference Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52. doi:10.1158/0008-5472.CAN-06-4447.PubMed Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52. doi:10.​1158/​0008-5472.​CAN-06-4447.PubMed
64.
go back to reference Muaddi H, Chowdhury S, Vellanki R, Zamiara P, Koritzinsky M. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology. 2013. doi:10.1016/j.radonc.2013.06.014 Muaddi H, Chowdhury S, Vellanki R, Zamiara P, Koritzinsky M. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology. 2013. doi:10.​1016/​j.​radonc.​2013.​06.​014
67.
go back to reference Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D’Aiuto E, Troiani T, et al. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res: an Official Journal of the American Association for Cancer Research. 2013;19(13):3508–19. doi:10.1158/1078-0432.CCR-12-2777. Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D’Aiuto E, Troiani T, et al. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res: an Official Journal of the American Association for Cancer Research. 2013;19(13):3508–19. doi:10.​1158/​1078-0432.​CCR-12-2777.
69.
go back to reference Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMed Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMed
70.
go back to reference Burmer GC, Loeb LA. Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc Natl Acad Sci U S A. 1989;86(7):2403–7.PubMedCentralPubMed Burmer GC, Loeb LA. Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc Natl Acad Sci U S A. 1989;86(7):2403–7.PubMedCentralPubMed
71.
go back to reference Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Canc Res: an Official Journal of the American Association for Cancer Research. 2006;12(5):1647–53. doi:10.1158/1078-0432.CCR-05-1981. Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Canc Res: an Official Journal of the American Association for Cancer Research. 2006;12(5):1647–53. doi:10.​1158/​1078-0432.​CCR-05-1981.
73.
go back to reference Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10. doi:10.1038/nature06030.PubMed Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10. doi:10.​1038/​nature06030.PubMed
75.
go back to reference Tsai LH, Chen PM, Cheng YW, Chen CY, Sheu GT, Wu TC et al. LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene. 2013. doi:10.1038/onc.2013.353. Tsai LH, Chen PM, Cheng YW, Chen CY, Sheu GT, Wu TC et al. LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene. 2013. doi:10.​1038/​onc.​2013.​353.
76.
go back to reference Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene. 2011;30(10):1174–82. doi:10.1038/onc.2010.483.PubMed Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene. 2011;30(10):1174–82. doi:10.​1038/​onc.​2010.​483.PubMed
79.
go back to reference Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005;24(8):1477–80. doi:10.1038/sj.onc.1208304.PubMed Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005;24(8):1477–80. doi:10.​1038/​sj.​onc.​1208304.PubMed
81.
go back to reference Cufi S, Corominas-Faja B, Lopez-Bonet E, Bonavia R, Pernas S, Lopez IA, et al. Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin. Oncotarget. 2013;4(9):1484–95.PubMedCentralPubMed Cufi S, Corominas-Faja B, Lopez-Bonet E, Bonavia R, Pernas S, Lopez IA, et al. Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin. Oncotarget. 2013;4(9):1484–95.PubMedCentralPubMed
82.
go back to reference Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE, et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res: an Official Journal of the American Association for Cancer Research. 2011;17(12):3993–4005. doi:10.1158/1078-0432.CCR-10-2243. Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE, et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res: an Official Journal of the American Association for Cancer Research. 2011;17(12):3993–4005. doi:10.​1158/​1078-0432.​CCR-10-2243.
84.
go back to reference Rosilio C, Lounnas N, Nebout M, Imbert V, Hagenbeek T, Spits H, et al. The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Lett. 2013;336(1):114–26. doi:10.1016/j.canlet.2013.04.015.PubMed Rosilio C, Lounnas N, Nebout M, Imbert V, Hagenbeek T, Spits H, et al. The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Lett. 2013;336(1):114–26. doi:10.​1016/​j.​canlet.​2013.​04.​015.PubMed
88.
90.
go back to reference Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Patents on Drug Delivery and Formulation. 2007;1(1):37–51.PubMed Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Patents on Drug Delivery and Formulation. 2007;1(1):37–51.PubMed
92.
go back to reference Snima K, Jayakumar R, Unnikrishnan A, Nair SV, Lakshmanan V-K. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym. 2012;89(3):1003–7.PubMed Snima K, Jayakumar R, Unnikrishnan A, Nair SV, Lakshmanan V-K. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym. 2012;89(3):1003–7.PubMed
93.
go back to reference Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release: Official Journal of the Controlled Release Society. 2000;65(1–2):133–48. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release: Official Journal of the Controlled Release Society. 2000;65(1–2):133–48.
95.
go back to reference Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci. 2002;91(1):157–70.PubMed Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci. 2002;91(1):157–70.PubMed
96.
go back to reference Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori. 2008;94(2):271–7.PubMed Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori. 2008;94(2):271–7.PubMed
97.
go back to reference Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106(10):3907–12. doi:10.1073/pnas.0807991106.PubMedCentralPubMed Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106(10):3907–12. doi:10.​1073/​pnas.​0807991106.PubMedCentralPubMed
99.
go back to reference Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Surg Pathol. 1954;30(5):969–77. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Surg Pathol. 1954;30(5):969–77.
100.
go back to reference Vogl TJ, Naguib NN, Nour-Eldin NE, Rao P, Emami AH, Zangos S, et al. Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur J Radiol. 2009;72(3):505–16. doi:10.1016/j.ejrad.2008.08.007.PubMed Vogl TJ, Naguib NN, Nour-Eldin NE, Rao P, Emami AH, Zangos S, et al. Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur J Radiol. 2009;72(3):505–16. doi:10.​1016/​j.​ejrad.​2008.​08.​007.PubMed
101.
go back to reference Giunchedi P, Maestri M, Gavini E, Dionigi P, Rassu G. Transarterial chemoembolization of hepatocellular carcinoma. Agents and drugs: an overview. Part 1. Expert Opin Drug Deliv. 2013;10(5):679–90.PubMed Giunchedi P, Maestri M, Gavini E, Dionigi P, Rassu G. Transarterial chemoembolization of hepatocellular carcinoma. Agents and drugs: an overview. Part 1. Expert Opin Drug Deliv. 2013;10(5):679–90.PubMed
102.
go back to reference Cai X, Hu X, Cai B, Wang Q, Li Y, Tan X, et al. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol Rep. 2013;30(5):2449–57. doi:10.3892/or.2013.2718.PubMed Cai X, Hu X, Cai B, Wang Q, Li Y, Tan X, et al. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol Rep. 2013;30(5):2449–57. doi:10.​3892/​or.​2013.​2718.PubMed
103.
go back to reference Zheng L, Yang W, Wu F, Wang C, Yu L, Tang L, et al. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2013;19(19):5372–80. doi:10.1158/1078-0432.CCR-13-0203. Zheng L, Yang W, Wu F, Wang C, Yu L, Tang L, et al. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2013;19(19):5372–80. doi:10.​1158/​1078-0432.​CCR-13-0203.
107.
go back to reference Erices R, Bravo ML, Gonzalez P, Oliva B, Racordon D, Garrido M et al. Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells. Reproductive Sciences. 2013. doi:10.1177/1933719113488441. Erices R, Bravo ML, Gonzalez P, Oliva B, Racordon D, Garrido M et al. Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells. Reproductive Sciences. 2013. doi:10.​1177/​1933719113488441​.
108.
go back to reference Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab. 2012;97(4):E510–20. doi:10.1210/jc.2011-1754.PubMed Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab. 2012;97(4):E510–20. doi:10.​1210/​jc.​2011-1754.PubMed
Metadata
Title
Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery
Authors
Mihaela Aldea
Lucian Craciun
Ciprian Tomuleasa
Ioana Berindan-Neagoe
Gabriel Kacso
Ioan Stefan Florian
Carmen Crivii
Publication date
01-06-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-1676-8

Other articles of this Issue 6/2014

Tumor Biology 6/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine