Skip to main content
Top
Published in: European Radiology 12/2017

Open Access 01-12-2017 | Head and Neck

Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions

Authors: Augustin Lecler, Julien Savatovsky, Daniel Balvay, Mathieu Zmuda, Jean-Claude Sadik, Olivier Galatoire, Frédérique Charbonneau, Olivier Bergès, Hervé Picard, Laure Fournier

Published in: European Radiology | Issue 12/2017

Login to get access

Abstract

Objectives

To evaluate repeatability of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) parameters in the orbit.

Methods

From December 2015 to March 2016, 22 patients were scanned twice using an IVIM sequence with 15b values (0–2,000 s/mm2) at 3.0T. Two readers independently delineated regions of interest in an orbital mass and in different intra-orbital and extra-orbital structures. Short-term test-retest repeatability and inter-observer agreement were assessed using the intra-class correlation coefficient (ICC), the coefficient of variation (CV) and Bland-Altman limits of agreements (BA-LA).

Results

Test-retest repeatability of IVIM parameters in the orbital mass was satisfactory for ADC and D (mean CV 12% and 14%, ICC 95% and 93%), poor for f and D*(means CV 43% and 110%, ICC 90% and 65%). Inter-observer repeatability agreement was almost perfect in the orbital mass for all the IVIM parameters (ICC = 95%, 93%, 94% and 90% for ADC, D, f and D*, respectively).

Conclusions

IVIM appeared to be a robust tool to measure D in orbital lesions with good repeatability, but this approach showed a poor repeatability of f and D*.

Key Points

IVIM technique is feasible in the orbit.
IVIM has a goodacceptable repeatability of D (CV range 1225 %).
IVIM interobserver repeatability agreement is excellent (ICC range 9095 %).
f or D* provide higher test-retest and interobserver variabilities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407CrossRefPubMed Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407CrossRefPubMed
2.
go back to reference Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351CrossRefPubMed Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351CrossRefPubMed
3.
go back to reference Koh D-M, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361CrossRefPubMed Koh D-M, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361CrossRefPubMed
4.
go back to reference Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 249:891–899CrossRefPubMed Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 249:891–899CrossRefPubMed
5.
go back to reference Patel J, Sigmund EE, Rusinek H et al (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging JMRI 31:589–600CrossRefPubMed Patel J, Sigmund EE, Rusinek H et al (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging JMRI 31:589–600CrossRefPubMed
6.
go back to reference Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44:769–775CrossRefPubMed Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44:769–775CrossRefPubMed
7.
go back to reference Thoeny HC, Binser T, Roth B et al (2009) Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 252:721–728CrossRefPubMed Thoeny HC, Binser T, Roth B et al (2009) Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 252:721–728CrossRefPubMed
8.
go back to reference Döpfert J, Lemke A, Weidner A, Schad LR (2011) Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 29:1053–1058CrossRefPubMed Döpfert J, Lemke A, Weidner A, Schad LR (2011) Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 29:1053–1058CrossRefPubMed
9.
go back to reference Bisdas S, Koh TS, Roder C et al (2013) Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology 55:1189–1196CrossRefPubMed Bisdas S, Koh TS, Roder C et al (2013) Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology 55:1189–1196CrossRefPubMed
10.
go back to reference Wu W-C, Chen Y-F, Tseng H-M et al (2015) Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol 25:2485–2492CrossRefPubMedPubMedCentral Wu W-C, Chen Y-F, Tseng H-M et al (2015) Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol 25:2485–2492CrossRefPubMedPubMedCentral
11.
go back to reference Dyvorne H, Jajamovich G, Kakite S et al (2014) Intravoxel incoherent motion diffusion imaging of the liver: optimal b-value subsampling and impact on parameter precision and reproducibility. Eur J Radiol 83:2109–2113CrossRefPubMedPubMedCentral Dyvorne H, Jajamovich G, Kakite S et al (2014) Intravoxel incoherent motion diffusion imaging of the liver: optimal b-value subsampling and impact on parameter precision and reproducibility. Eur J Radiol 83:2109–2113CrossRefPubMedPubMedCentral
12.
go back to reference Moteki T, Horikoshi H (2006) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging JMRI 24:637–645CrossRefPubMed Moteki T, Horikoshi H (2006) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging JMRI 24:637–645CrossRefPubMed
13.
go back to reference Kakite S, Dyvorne H, Besa C et al (2015) Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging JMRI 41:149–156CrossRefPubMed Kakite S, Dyvorne H, Besa C et al (2015) Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging JMRI 41:149–156CrossRefPubMed
14.
go back to reference Sigmund EE, Vivier P-H, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769CrossRefPubMed Sigmund EE, Vivier P-H, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769CrossRefPubMed
15.
go back to reference Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2015) Comparison of Intravoxel Incoherent Motion Parameters across MR Imagers and Field Strengths: Evaluation in Upper Abdominal Organs. Radiology 279:784–794CrossRefPubMed Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2015) Comparison of Intravoxel Incoherent Motion Parameters across MR Imagers and Field Strengths: Evaluation in Upper Abdominal Organs. Radiology 279:784–794CrossRefPubMed
16.
go back to reference Politi LS, Forghani R, Godi C et al (2010) Ocular adnexal lymphoma: diffusion-weighted mr imaging for differential diagnosis and therapeutic monitoring. Radiology 256:565–574CrossRefPubMed Politi LS, Forghani R, Godi C et al (2010) Ocular adnexal lymphoma: diffusion-weighted mr imaging for differential diagnosis and therapeutic monitoring. Radiology 256:565–574CrossRefPubMed
17.
go back to reference Sepahdari AR, Aakalu VK, Setabutr P et al (2010) Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology 256:554–564CrossRefPubMed Sepahdari AR, Aakalu VK, Setabutr P et al (2010) Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology 256:554–564CrossRefPubMed
18.
go back to reference Haradome K, Haradome H, Usui Y et al (2014) Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs. AJNR Am J Neuroradiol 35:1976–1982CrossRefPubMed Haradome K, Haradome H, Usui Y et al (2014) Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs. AJNR Am J Neuroradiol 35:1976–1982CrossRefPubMed
19.
go back to reference Xu X-Q, Hu H, Liu H et al (2016) Benign and malignant orbital lymphoproliferative disorders: Differentiating using multiparametric MRI at 3.0T. J Magn Reson Imaging JMRI 45:167–176CrossRefPubMed Xu X-Q, Hu H, Liu H et al (2016) Benign and malignant orbital lymphoproliferative disorders: Differentiating using multiparametric MRI at 3.0T. J Magn Reson Imaging JMRI 45:167–176CrossRefPubMed
20.
go back to reference Ro S-R, Asbach P, Siebert E et al (2016) Characterization of orbital masses by multiparametric MRI. Eur J Radiol 85:324–336CrossRefPubMed Ro S-R, Asbach P, Siebert E et al (2016) Characterization of orbital masses by multiparametric MRI. Eur J Radiol 85:324–336CrossRefPubMed
21.
go back to reference Steens SCA, Admiraal-Behloul F, Schaap JA et al (2004) Reproducibility of brain ADC histograms. Eur Radiol 14:425–430CrossRefPubMed Steens SCA, Admiraal-Behloul F, Schaap JA et al (2004) Reproducibility of brain ADC histograms. Eur Radiol 14:425–430CrossRefPubMed
22.
go back to reference Reeder SB, Wintersperger BJ, Dietrich O et al (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54:748–754CrossRefPubMed Reeder SB, Wintersperger BJ, Dietrich O et al (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54:748–754CrossRefPubMed
23.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl 1:307–310CrossRef
24.
go back to reference Barnhart HX, Barboriak DP (2009) Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol 2:231–235CrossRefPubMedPubMedCentral Barnhart HX, Barboriak DP (2009) Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol 2:231–235CrossRefPubMedPubMedCentral
25.
go back to reference Raunig DL, McShane LM, Pennello G et al (2015) Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 24:27–67CrossRefPubMed Raunig DL, McShane LM, Pennello G et al (2015) Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 24:27–67CrossRefPubMed
28.
go back to reference Hoang JK, Choudhury KR, Chang J et al (2014) Diffusion-weighted imaging for head and neck squamous cell carcinoma: quantifying repeatability to understand early treatment-induced change. AJR Am J Roentgenol 203:1104–1108CrossRefPubMed Hoang JK, Choudhury KR, Chang J et al (2014) Diffusion-weighted imaging for head and neck squamous cell carcinoma: quantifying repeatability to understand early treatment-induced change. AJR Am J Roentgenol 203:1104–1108CrossRefPubMed
29.
go back to reference Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2015) Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med 75:2175–2184CrossRefPubMed Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2015) Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med 75:2175–2184CrossRefPubMed
30.
go back to reference Lee Y, Lee SS, Kim N et al (2015) Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 274:405–415CrossRefPubMed Lee Y, Lee SS, Kim N et al (2015) Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 274:405–415CrossRefPubMed
31.
go back to reference Jerome NP, Orton MR, d’Arcy JA et al (2014) Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics. J Magn Reson Imaging JMRI 39:235–240CrossRefPubMed Jerome NP, Orton MR, d’Arcy JA et al (2014) Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics. J Magn Reson Imaging JMRI 39:235–240CrossRefPubMed
32.
go back to reference Neil JJ, Bretthorst GL (1993) On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 29:642–647CrossRefPubMed Neil JJ, Bretthorst GL (1993) On the use of Bayesian probability theory for analysis of exponential decay data: an example taken from intravoxel incoherent motion experiments. Magn Reson Med 29:642–647CrossRefPubMed
33.
go back to reference Sukstanskii AL, Bretthorst GL, Chang YV et al (1997) (2007) How accurately can the parameters from a model of anisotropic 3He gas diffusion in lung acinar airways be estimated? Bayesian view. J Magn Reson San Diego Calif 184:62–71CrossRef Sukstanskii AL, Bretthorst GL, Chang YV et al (1997) (2007) How accurately can the parameters from a model of anisotropic 3He gas diffusion in lung acinar airways be estimated? Bayesian view. J Magn Reson San Diego Calif 184:62–71CrossRef
34.
go back to reference Kessler LG, Barnhart HX, Buckler AJ et al (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24:9–26CrossRefPubMed Kessler LG, Barnhart HX, Buckler AJ et al (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24:9–26CrossRefPubMed
35.
go back to reference Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiogr Rev Publ Radiol Soc N Am Inc 28:1983–1998 Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiogr Rev Publ Radiol Soc N Am Inc 28:1983–1998
36.
go back to reference Erb-Eigner K, Warmuth C, Taupitz M et al (2013) Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 185:830–837CrossRef Erb-Eigner K, Warmuth C, Taupitz M et al (2013) Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 185:830–837CrossRef
37.
go back to reference Beenakker J-WM, Ferreira TA, Soemarwoto KP et al (2016) Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uveal melanoma patients, with direct relevance to treatment planning. Magma N Y N 29:571–577CrossRef Beenakker J-WM, Ferreira TA, Soemarwoto KP et al (2016) Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uveal melanoma patients, with direct relevance to treatment planning. Magma N Y N 29:571–577CrossRef
38.
go back to reference Goh V, Schaeffter T, Leach M (2013) Reproducibility of dynamic contrast-enhanced MR imaging: why we should care. Radiology 266:698–700CrossRefPubMed Goh V, Schaeffter T, Leach M (2013) Reproducibility of dynamic contrast-enhanced MR imaging: why we should care. Radiology 266:698–700CrossRefPubMed
39.
go back to reference Thomassin-Naggara I, Daraï E, Cuenod CA et al (2008) Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging JMRI 28:111–120CrossRefPubMed Thomassin-Naggara I, Daraï E, Cuenod CA et al (2008) Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging JMRI 28:111–120CrossRefPubMed
40.
go back to reference Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMed Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMed
Metadata
Title
Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions
Authors
Augustin Lecler
Julien Savatovsky
Daniel Balvay
Mathieu Zmuda
Jean-Claude Sadik
Olivier Galatoire
Frédérique Charbonneau
Olivier Bergès
Hervé Picard
Laure Fournier
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-017-4933-6

Other articles of this Issue 12/2017

European Radiology 12/2017 Go to the issue