Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae)

Authors: Rukpong Sanghong, Anuluck Junkum, Udom Chaithong, Atchariya Jitpakdi, Doungrat Riyong, Benjawan Tuetun, Daruna Champakaew, Jitrawadee Intirach, Roongtawan Muangmoon, Arpaporn Chansang, Benjawan Pitasawat

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

For personal protection against mosquito bites, user-friendly natural repellents, particularly from plant origin, are considered as a potential alternative to applications currently based on synthetics such as DEET, the standard chemical repellent. This study was carried out in Thailand to evaluate the repellency of Ligusticum sinense hexane extract (LHE) against laboratory Anopheles minimus and Aedes aegypti, the primary vectors of malaria and dengue fever, respectively.

Methods

Repellent testing of 25% LHE against the two target mosquitoes; An. minimus and Ae. aegypti, was performed and compared to the standard repellent, DEET, with the assistance of six human volunteers of either sex under laboratory conditions. The physical and biological stability of LHE also was determined after keeping it in conditions that varied in temperature and storage time. Finally, LHE was analysed chemically using the qualitative GC/MS technique in order to demonstrate a profile of chemical constituents.

Results

Ethanol preparations of LHE, with and without 5% vanillin, demonstrated a remarkably effective performance when compared to DEET in repelling both An. minimus and Ae. aegypti. While 25% LHE alone provided median complete-protection times against An. minimus and Ae. aegypti of 11.5 (9.0–14.0) hours and 6.5 (5.5–9.5) hours, respectively, the addition of 5% vanillin increased those times to 12.5 (9.0–16.0) hours and 11.0 (7.0–13.5) hours, respectively. Correspondingly, vanillin added to 25% DEET also extended the protection times from 11.5 (10.5–15.0) hours to 14.25 (11.0–18.0) hours and 8.0 (5.0–9.5) hours to 8.75 (7.5–11.0) hours against An. minimus and Ae. aegypti, respectively. No local skin reaction such as rash, swelling or irritation was observed during the study period. Although LHE samples kept at ambient temperature (21–35°C), and 45°C for 1, 2 and 3 months, demonstrated similar physical characteristics, such as similar viscosity and a pleasant odour, to those that were fresh and stored at 4°C, their colour changed from light- to dark-brown. Interestingly, repellency against Ae. aegypti of stored LHE was presented for a period of at least 3 months, with insignificantly varied efficacy. Chemical analysis revealed that the main components of LHE were 3-N-butylphthalide (31.46%), 2, 5-dimethylpyridine (21.94%) and linoleic acid (16.41%), constituting 69.81% of all the extract composition.

Conclusions

LHE with proven repellent efficacy, no side effects on the skin, and a rather stable state when kept in varied conditions is considered to be a potential candidate for developing a new natural alternative to DEET, or an additional weapon for integrated vector control when used together with other chemicals/measures.
Literature
1.
go back to reference WHO (2013) World Malaria Report. World Health Organization, Geneva WHO (2013) World Malaria Report. World Health Organization, Geneva
2.
go back to reference ‎Schlagenhauf-Lawlor P (2008) Travelers’ malaria, 2nd edn. BC Decker Inc, Canada ‎Schlagenhauf-Lawlor P (2008) Travelers’ malaria, 2nd edn. BC Decker Inc, Canada
3.
go back to reference WHO (2011) World Malaria Report. World Health Organization, Geneva WHO (2011) World Malaria Report. World Health Organization, Geneva
4.
go back to reference Van Bortel W, Trung HD, Roelants P, Backeljau T, Coosemans M (2003) Population genetic structure of the malaria vector Anopheles minimus A in Vietnam. Heredity (Edinb) 91:487–493CrossRef Van Bortel W, Trung HD, Roelants P, Backeljau T, Coosemans M (2003) Population genetic structure of the malaria vector Anopheles minimus A in Vietnam. Heredity (Edinb) 91:487–493CrossRef
5.
go back to reference WHO (2006) WHO Technical Report Series (Malaria Vector Control and Personal Protection). World Health Organization, Geneva WHO (2006) WHO Technical Report Series (Malaria Vector Control and Personal Protection). World Health Organization, Geneva
6.
go back to reference Patipong S, Yongchaitrakul S (2008) Field efficacy and persistence of long lasting insecticide treated mosquito nets (LLINs) in compari-son with conventional insecticide treated mosquito nets (ITN) against malaria vec-tor in Thailand. J Vector Borne Dis 5:7–13 Patipong S, Yongchaitrakul S (2008) Field efficacy and persistence of long lasting insecticide treated mosquito nets (LLINs) in compari-son with conventional insecticide treated mosquito nets (ITN) against malaria vec-tor in Thailand. J Vector Borne Dis 5:7–13
7.
go back to reference WHO (2007) WHO Country Cooperation Strategy 2008–2011: Thailand. World Health Organization, Geneva WHO (2007) WHO Country Cooperation Strategy 2008–2011: Thailand. World Health Organization, Geneva
8.
go back to reference Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6:280PubMedCentralPubMedCrossRef Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6:280PubMedCentralPubMedCrossRef
9.
11.
go back to reference WHO (2007) Scientific Working Group Report on Dengue. World Health Organization, Geneva WHO (2007) Scientific Working Group Report on Dengue. World Health Organization, Geneva
12.
go back to reference Rozendaal JA (1997) Vector control: methods for use by individuals and communities. World Health Organization, Geneva Rozendaal JA (1997) Vector control: methods for use by individuals and communities. World Health Organization, Geneva
13.
go back to reference Lupi E, Hatz C, Schlagenhauf P (2013) The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp.: a literature review. Travel Med Infect Dis 11:374–411PubMedCrossRef Lupi E, Hatz C, Schlagenhauf P (2013) The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp.: a literature review. Travel Med Infect Dis 11:374–411PubMedCrossRef
14.
go back to reference Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14:181–189PubMedCrossRef Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M (2000) Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14:181–189PubMedCrossRef
15.
go back to reference Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW et al (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 15:295–304CrossRef Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW et al (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 15:295–304CrossRef
16.
go back to reference Shelton AM, Roush RT, Wang P, Zhao JZ (2007) Resistance to insect pathogens and strategies to manage resistance: an update. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Kluwer Academic Press, Boston, pp 793–811CrossRef Shelton AM, Roush RT, Wang P, Zhao JZ (2007) Resistance to insect pathogens and strategies to manage resistance: an update. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Kluwer Academic Press, Boston, pp 793–811CrossRef
17.
go back to reference Chavasse DC, Yap HH (1997) Chemical methods for the control of vector and pests of public health importance. WHO/CTD/WHOPES/97.2. World Health Organization, Geneva Chavasse DC, Yap HH (1997) Chemical methods for the control of vector and pests of public health importance. WHO/CTD/WHOPES/97.2. World Health Organization, Geneva
18.
go back to reference Katz TM, Miller JH, Hebert AA (2008) Insect repellents: historical perspectives and new developments. J Am Acad Dermatol 58:865–871PubMedCrossRef Katz TM, Miller JH, Hebert AA (2008) Insect repellents: historical perspectives and new developments. J Am Acad Dermatol 58:865–871PubMedCrossRef
19.
go back to reference Fradin MS (1998) Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med 128:931–940PubMedCrossRef Fradin MS (1998) Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med 128:931–940PubMedCrossRef
20.
go back to reference Debboun M, Frances SP, Strickman D (2007) Insect repellents: principles, methods & uses, 1st edn. CRC Press, Boca Raton Debboun M, Frances SP, Strickman D (2007) Insect repellents: principles, methods & uses, 1st edn. CRC Press, Boca Raton
21.
go back to reference Peterson C, Coats J (2001) Insect repellents—past, present and future. Pestic Outlook 54:75–76 Peterson C, Coats J (2001) Insect repellents—past, present and future. Pestic Outlook 54:75–76
22.
go back to reference Osimitz TG, Murphy JV, Fell LA, Page B (2010) Adverse events associated with the use of insect repellents containing N,N diethyl-m-toluamide (DEET). Regul Toxicol Pharmacol 56:93–99PubMedCrossRef Osimitz TG, Murphy JV, Fell LA, Page B (2010) Adverse events associated with the use of insect repellents containing N,N diethyl-m-toluamide (DEET). Regul Toxicol Pharmacol 56:93–99PubMedCrossRef
23.
go back to reference Patel EK, Gupta A, Oswal RJ (2012) A review on: mosquito repellent methods. IJPCBS 2:310–317 Patel EK, Gupta A, Oswal RJ (2012) A review on: mosquito repellent methods. IJPCBS 2:310–317
25.
go back to reference Sanghong R, Junkum A, Choochote W, Chaithong U, Jitpakdi A, Riyong D et al (2014) Repellency screening of herbal products against the dengue fever vector, Aedes aegypti (Diptera: Culicidae). Chiang Mai Med J 53:53–61 Sanghong R, Junkum A, Choochote W, Chaithong U, Jitpakdi A, Riyong D et al (2014) Repellency screening of herbal products against the dengue fever vector, Aedes aegypti (Diptera: Culicidae). Chiang Mai Med J 53:53–61
26.
go back to reference WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides. CTD/WHOPES/IC/96.1. World Health Organization, Geneva WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides. CTD/WHOPES/IC/96.1. World Health Organization, Geneva
27.
go back to reference Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRef Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRef
28.
go back to reference Hati AK (1997) Urban malaria vector biology. Ind J Med Res 106:149–163 Hati AK (1997) Urban malaria vector biology. Ind J Med Res 106:149–163
29.
go back to reference Sharma VP (1999) Current scenario of malaria in India. Parassitologia 41:349–353PubMed Sharma VP (1999) Current scenario of malaria in India. Parassitologia 41:349–353PubMed
30.
go back to reference Klun J, Khrimian A, Margaryan A, Kramer M, Debboun M (2003) Synthesis and repellent efficacy of a new chiral piperidine analog: comparison with DEET and Bayrepel activity in human-volunteer laboratory assays against Aedes aegypti and Anopheles stephensi. J Med Entomol 40:293–299PubMedCrossRef Klun J, Khrimian A, Margaryan A, Kramer M, Debboun M (2003) Synthesis and repellent efficacy of a new chiral piperidine analog: comparison with DEET and Bayrepel activity in human-volunteer laboratory assays against Aedes aegypti and Anopheles stephensi. J Med Entomol 40:293–299PubMedCrossRef
31.
go back to reference Belkin JN, Heinemann SJ, Page WA (1970) Mosquito studies (Diptera, Culicidae). XXI. The Culicidae of Jamaica. Contr Am Entomol Inst 6:1–458 Belkin JN, Heinemann SJ, Page WA (1970) Mosquito studies (Diptera, Culicidae). XXI. The Culicidae of Jamaica. Contr Am Entomol Inst 6:1–458
32.
go back to reference Faran ME (1980) Mosquito studies (Diptera, Culicidae) XXXIV. A revision of the albimanus section of the subgenus Nyssorhynchus of Anopheles. Contr Am Ent Inst 15:1–215 Faran ME (1980) Mosquito studies (Diptera, Culicidae) XXXIV. A revision of the albimanus section of the subgenus Nyssorhynchus of Anopheles. Contr Am Ent Inst 15:1–215
33.
go back to reference Rutledge CC, Moussa MA, Loweee CA, Sofield RK (1978) Comparative sensitivity of mosquito species and strains to the repellent diethyl toluamide. J Med Entomol 14:536–541PubMedCrossRef Rutledge CC, Moussa MA, Loweee CA, Sofield RK (1978) Comparative sensitivity of mosquito species and strains to the repellent diethyl toluamide. J Med Entomol 14:536–541PubMedCrossRef
34.
go back to reference Schreck CE (1985) The status of DEET (N,N-diethyl-m-toluamide) as a repellent for Anopheles albimanus. J Am Mosq Control Assoc 1:98–100PubMed Schreck CE (1985) The status of DEET (N,N-diethyl-m-toluamide) as a repellent for Anopheles albimanus. J Am Mosq Control Assoc 1:98–100PubMed
35.
go back to reference Klun JA, Strickman D, Rowton E, Williams J, Kramer M, Roberts D et al (2004) Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (DEET) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3-37220) in laboratory human-volunteer repellent assays. J Med Entomol 41:418–422PubMedCrossRef Klun JA, Strickman D, Rowton E, Williams J, Kramer M, Roberts D et al (2004) Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (DEET) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3-37220) in laboratory human-volunteer repellent assays. J Med Entomol 41:418–422PubMedCrossRef
36.
go back to reference Frances SP, Eikarat N, Sripongsai B, Eamsila C (1993) Response of Anopheles dirus and Aedes albopictus to repellents in the laboratory. J Am Mosq Control Assoc 9:474–476PubMed Frances SP, Eikarat N, Sripongsai B, Eamsila C (1993) Response of Anopheles dirus and Aedes albopictus to repellents in the laboratory. J Am Mosq Control Assoc 9:474–476PubMed
37.
go back to reference Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y (2001) Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26:76–82PubMed Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y (2001) Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26:76–82PubMed
38.
go back to reference Tuetun B, Choochote W, Kanjanapothi D, Rattanachanpichai E, Chaithong E, Chaiwong P et al (2005) Repellent properties of celery, Apium graveolens L., compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health 10:1190–1198PubMedCrossRef Tuetun B, Choochote W, Kanjanapothi D, Rattanachanpichai E, Chaithong E, Chaiwong P et al (2005) Repellent properties of celery, Apium graveolens L., compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health 10:1190–1198PubMedCrossRef
39.
go back to reference Kamsuk K, Choochote W, Chaithong U, Jitpakdi A, Tippawangkosol P, Riyong D et al (2007) Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications. Parasitol Res 100:339–345PubMedCrossRef Kamsuk K, Choochote W, Chaithong U, Jitpakdi A, Tippawangkosol P, Riyong D et al (2007) Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications. Parasitol Res 100:339–345PubMedCrossRef
40.
go back to reference Yang P, Ma Y (2005) Repellent effect of plant essential oils against Aedes albopictus. J Vector Ecol 30:231–234PubMed Yang P, Ma Y (2005) Repellent effect of plant essential oils against Aedes albopictus. J Vector Ecol 30:231–234PubMed
41.
go back to reference Kim S, Yoon J, Baeck S, Lee S, Ahn Y, Kwon H (2012) Toxicity and synergic repellency of plant essential oil mixtures with vanillin against Aedes aegypti (Diptera: Culicidae). J Med Entomol 49:876–885PubMedCrossRef Kim S, Yoon J, Baeck S, Lee S, Ahn Y, Kwon H (2012) Toxicity and synergic repellency of plant essential oil mixtures with vanillin against Aedes aegypti (Diptera: Culicidae). J Med Entomol 49:876–885PubMedCrossRef
44.
go back to reference Songkro S, Jenboonlap M, Boonprasertpon M, Maneenuan D, Bouking K, Kaewnopparat N (2012) Effects of glucam P-20, vanillin, and fixolide on mosquito repellency of citronella oil lotions. J Med Entomol 49:672–677PubMedCrossRef Songkro S, Jenboonlap M, Boonprasertpon M, Maneenuan D, Bouking K, Kaewnopparat N (2012) Effects of glucam P-20, vanillin, and fixolide on mosquito repellency of citronella oil lotions. J Med Entomol 49:672–677PubMedCrossRef
46.
go back to reference Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B et al (2007) Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia 78:359–364PubMedCrossRef Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B et al (2007) Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia 78:359–364PubMedCrossRef
47.
go back to reference Tuetun B, Choochote W, Rattanachanpichai E, Chaithong U, Jitpakdi A, Tippawangkosol P et al (2004) Mosquito repellency of the seeds of celery (Apium graveolens L.). Ann Trop Med Parasitol 98:407–417PubMedCrossRef Tuetun B, Choochote W, Rattanachanpichai E, Chaithong U, Jitpakdi A, Tippawangkosol P et al (2004) Mosquito repellency of the seeds of celery (Apium graveolens L.). Ann Trop Med Parasitol 98:407–417PubMedCrossRef
48.
go back to reference Vieira RF, Simon JE (2000) Chemical characterization of basil (Ocimum spp.) found in the markets and used in traditional medicine in Brazil. Econ Bot 54:207–216CrossRef Vieira RF, Simon JE (2000) Chemical characterization of basil (Ocimum spp.) found in the markets and used in traditional medicine in Brazil. Econ Bot 54:207–216CrossRef
49.
go back to reference Wandscheer CB, Duque JE, da Silva MAN, Fukuyama Y, Wohlke JL, Adelmann J et al (2004) Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon 44:829–835PubMedCrossRef Wandscheer CB, Duque JE, da Silva MAN, Fukuyama Y, Wohlke JL, Adelmann J et al (2004) Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon 44:829–835PubMedCrossRef
50.
go back to reference Nurzyńska-wierdak R, Borowski B, Dzida K, Zawislak R, Kowalski R (2013) Essential oil composition of sweet basil cultivars as affected by nitrogen and potassium fertilization. Turk J Agric For 37:427–436 Nurzyńska-wierdak R, Borowski B, Dzida K, Zawislak R, Kowalski R (2013) Essential oil composition of sweet basil cultivars as affected by nitrogen and potassium fertilization. Turk J Agric For 37:427–436
51.
go back to reference Luo YM (1998) Research progress of Ligusticum sinense Oliv cv. chaxiong. Jiangxi J Trad Chin Med 10:87–89 Luo YM (1998) Research progress of Ligusticum sinense Oliv cv. chaxiong. Jiangxi J Trad Chin Med 10:87–89
52.
go back to reference Luo YM, Zhang JH, Pan JK, Yao SL, Huang HL, Zhu Y (1994) The constituents of Ligusticum sinense Oliv cv. chaxiong. Chin Phar J 29:714–716 Luo YM, Zhang JH, Pan JK, Yao SL, Huang HL, Zhu Y (1994) The constituents of Ligusticum sinense Oliv cv. chaxiong. Chin Phar J 29:714–716
53.
go back to reference Zhu Y, Luo YM (1997) Preliminary study of polysaccharide of L. chaxiong. Jiangxi J Trad Chin Med 9:32–33 Zhu Y, Luo YM (1997) Preliminary study of polysaccharide of L. chaxiong. Jiangxi J Trad Chin Med 9:32–33
54.
go back to reference Wang J, Xu L, Yang L, Liu Z, Zhou L (2011) Composition, antibacterial and antioxidant activities of essential oils from Ligusticum sinense and L. jeholense (Umbelliferae) from China. Rec Nat Prod 5:314–318 Wang J, Xu L, Yang L, Liu Z, Zhou L (2011) Composition, antibacterial and antioxidant activities of essential oils from Ligusticum sinense and L. jeholense (Umbelliferae) from China. Rec Nat Prod 5:314–318
55.
go back to reference Wei Q, Yang J, Ren J, Wang A, Ji T, Su Y (2014) Bioactive phthalides from Ligusticum sinense Oliv cv. Chaxiong. Fitoterapia 93:226–232PubMedCrossRef Wei Q, Yang J, Ren J, Wang A, Ji T, Su Y (2014) Bioactive phthalides from Ligusticum sinense Oliv cv. Chaxiong. Fitoterapia 93:226–232PubMedCrossRef
56.
go back to reference Huang YZ, Pu FD (1988) Studies on the chemical components of the essential oil from the rhizome of Ligusticum sinense Oliv. cv. Chuanxiong hort. Acta Pharm Sin 23:426–429 Huang YZ, Pu FD (1988) Studies on the chemical components of the essential oil from the rhizome of Ligusticum sinense Oliv. cv. Chuanxiong hort. Acta Pharm Sin 23:426–429
57.
go back to reference Wang J, Yang JB, Wang AG, Ji TF, Su YL (2011) Studies on the chemical constituents of Ligusticum sinense. Chin J Med Mat 34:378–380 Wang J, Yang JB, Wang AG, Ji TF, Su YL (2011) Studies on the chemical constituents of Ligusticum sinense. Chin J Med Mat 34:378–380
58.
go back to reference Tuetun B, Choochote W, Pongpaibul Y, Junkum A, Kanjanapothi D, Chaithong U et al (2008) Celery-based topical repellents as a potential natural alternative for personal protection against mosquitoes. Parasitol Res 104:107–115PubMedCrossRef Tuetun B, Choochote W, Pongpaibul Y, Junkum A, Kanjanapothi D, Chaithong U et al (2008) Celery-based topical repellents as a potential natural alternative for personal protection against mosquitoes. Parasitol Res 104:107–115PubMedCrossRef
59.
go back to reference Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KH et al (2009) Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470PubMedCrossRef Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KH et al (2009) Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470PubMedCrossRef
60.
go back to reference Frances SP, Klein TA, Hildebrandt DW, Burge R, Noigamol C, Eikarat N et al (1996) Laboratory and field evaluation of DEET, CIC-4, and AI3-37220 against Anopheles dirus (Diptera: Culicidae) in Thailand. J Med Entomol 33:511–515PubMedCrossRef Frances SP, Klein TA, Hildebrandt DW, Burge R, Noigamol C, Eikarat N et al (1996) Laboratory and field evaluation of DEET, CIC-4, and AI3-37220 against Anopheles dirus (Diptera: Culicidae) in Thailand. J Med Entomol 33:511–515PubMedCrossRef
61.
go back to reference Frances SP, Eamsila C, Pilakasiri C, Linthicum KJ (1996) Effectiveness of repellent formulations containing DEET against mosquitoes in northeastern Thailand. J Am Mosq Control Assoc 12(2 Pt 1):331–333PubMed Frances SP, Eamsila C, Pilakasiri C, Linthicum KJ (1996) Effectiveness of repellent formulations containing DEET against mosquitoes in northeastern Thailand. J Am Mosq Control Assoc 12(2 Pt 1):331–333PubMed
62.
go back to reference Frances SP, Cooper RD (2002) Personal protection measures against mosquitoes: a brief history and current use of repellents by the Australian Defence Force. ADF Health 3:58–63 Frances SP, Cooper RD (2002) Personal protection measures against mosquitoes: a brief history and current use of repellents by the Australian Defence Force. ADF Health 3:58–63
63.
go back to reference Frances SP, Cooper RD, Sweeney AW (1998) Laboratory and field evaluation of the repellents, DEET, CIC-4 and AI3-37220 against Anopheles farauti (Diptera: Culicidae) in Australia. J Med Entomol 35:690–693PubMedCrossRef Frances SP, Cooper RD, Sweeney AW (1998) Laboratory and field evaluation of the repellents, DEET, CIC-4 and AI3-37220 against Anopheles farauti (Diptera: Culicidae) in Australia. J Med Entomol 35:690–693PubMedCrossRef
64.
go back to reference Frances SP, Cooper RD, Popat S, Sweeney AW (1999) Field evaluation of the repellents, DEET, CIC-4 and AI3-37220 against Anopheles (Diptera: Culicidae) in Lae, Papua New Guinea. J Am Mosq Control Assoc 15:339–341PubMed Frances SP, Cooper RD, Popat S, Sweeney AW (1999) Field evaluation of the repellents, DEET, CIC-4 and AI3-37220 against Anopheles (Diptera: Culicidae) in Lae, Papua New Guinea. J Am Mosq Control Assoc 15:339–341PubMed
Metadata
Title
Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae)
Authors
Rukpong Sanghong
Anuluck Junkum
Udom Chaithong
Atchariya Jitpakdi
Doungrat Riyong
Benjawan Tuetun
Daruna Champakaew
Jitrawadee Intirach
Roongtawan Muangmoon
Arpaporn Chansang
Benjawan Pitasawat
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0816-y

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine