Skip to main content
Top
Published in: Clinical Drug Investigation 4/2007

01-04-2007 | Original Research Article

Relative Bioavailability, Metabolism and Tolerability of Rectally Administered Oxcarbazepine Suspension

Authors: Pamela L. Clemens, Dr James C. Cloyd, Robert L. Kriel, Rory P. Remmel

Published in: Clinical Drug Investigation | Issue 4/2007

Login to get access

Abstract

Background and objective: Maintenance of effective drug concentrations is essential for adequate treatment of epilepsy. Some antiepileptic drugs can be successfully administered rectally when the oral route of administration is temporarily unavailable. Oxcarbazepine is a newer antiepileptic drug that is rapidly converted to a monohydroxy derivative, the active compound. This study aimed to characterise the bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension using a randomised, crossover design in ten healthy volunteers.
Methods: Two subjects received 300mg doses of oxcarbazepine suspension via rectal and oral routes and eight received 450mg doses. A washout period of at least 2 weeks elapsed between doses. The rectal dose was diluted 1: 1 with water. Blood samples and urine were collected for 72 hours post-dose. Adverse effects were assessed at each blood collection time-point using a self-administered questionnaire. Plasma was assayed for oxcarbazepine and monohydroxy derivative; urine was assayed for monohydroxy derivative and monohydroxy derivative-glucuronide. Maximum plasma concentration (Cmax) and time to reach Cmax (tmax) were obtained directly from the plasma concentration-time curves. The areas under the concentration-time curve (AUCs) were determined via non-compartmental analysis. Relative bioavailability was calculated and the Cmax and AUCs were compared using Wilcoxon signed-rank tests.
Results: Mean relative bioavailability calculated from plasma AUCs was 8.3% (SD 5.5%) for the monohydroxy derivative and 10.8% (SD 7.3%) for oxcarbazepine. Oxcarbazepine and monohydroxy derivative Cmax and AUC values were significantly lower following rectal administration (p < 0.01). The total amount of monohydroxy derivative excreted in the urine following rectal administration was 10 ± 5% of the amount excreted following oral administration. Oral absorption was consistent with previous studies. The most common adverse effects were headache and fatigue with no discernible differences between routes.
Conclusions: Monohydroxy derivative bioavailability following rectal administration of oxcarbazepine suspension is significantly lower than following oral administration, most likely because of poor oxcarbazepine water solubility. It is unlikely that adequate monohydroxy derivative concentrations can be achieved with rectal administration of diluted oxcarbazepine suspension.
Footnotes
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literature
1.
go back to reference de Boer AG, Moolenaar F, de Leede LG, et al. Rectal drag administration: clinical pharmacokinetic considerations. Clin Pharmacokinet 1982 Jul–Aug; 7(4): 285–311PubMedCrossRef de Boer AG, Moolenaar F, de Leede LG, et al. Rectal drag administration: clinical pharmacokinetic considerations. Clin Pharmacokinet 1982 Jul–Aug; 7(4): 285–311PubMedCrossRef
2.
go back to reference Graves NM, Kriel RL, Jones-Saete C, et al. Relative bioavailability of rectally administered carbamazepine suspension in humans. Epilepsia 1985 Sep–Oct; 26(5): 429–33PubMedCrossRef Graves NM, Kriel RL, Jones-Saete C, et al. Relative bioavailability of rectally administered carbamazepine suspension in humans. Epilepsia 1985 Sep–Oct; 26(5): 429–33PubMedCrossRef
3.
go back to reference Neuvonen PJ, Tokola O. Bioavailability of rectally administered carbamazepine mixture. Br J Clin Pharmacol 1987 Dec; 24(6): 839–41PubMedCrossRef Neuvonen PJ, Tokola O. Bioavailability of rectally administered carbamazepine mixture. Br J Clin Pharmacol 1987 Dec; 24(6): 839–41PubMedCrossRef
4.
go back to reference Arvidsson J, Nilsson HL, Sandstedt P, et al. Replacing carbamazepine slow-release tablets with carbamazepine suppositories: a pharmacokinetic and clinical study in children with epilepsy. J Child Neurol 1995 Mar; 10(2): 114–7PubMedCrossRef Arvidsson J, Nilsson HL, Sandstedt P, et al. Replacing carbamazepine slow-release tablets with carbamazepine suppositories: a pharmacokinetic and clinical study in children with epilepsy. J Child Neurol 1995 Mar; 10(2): 114–7PubMedCrossRef
5.
go back to reference Issakainen J, Bourgeois BF. Bioavailability of sodium valproate suppositories during repeated administration at steady state in epileptic children. Eur J Pediatr 1987 Jul; 146(4): 404–7PubMedCrossRef Issakainen J, Bourgeois BF. Bioavailability of sodium valproate suppositories during repeated administration at steady state in epileptic children. Eur J Pediatr 1987 Jul; 146(4): 404–7PubMedCrossRef
6.
go back to reference Moolenaar F, Greving WJ, Huizinga T. Absorption rate and bioavailability of valproic acid and its sodium from rectal dosage forms. Eur J Clin Pharmacol 1980 May; 17(4): 309–15PubMedCrossRef Moolenaar F, Greving WJ, Huizinga T. Absorption rate and bioavailability of valproic acid and its sodium from rectal dosage forms. Eur J Clin Pharmacol 1980 May; 17(4): 309–15PubMedCrossRef
7.
go back to reference Cloyd JC, Kriel RL. Bioavailability of rectally administered valproic acid syrup. Neurology 1981 Oct; 31(10): 1348–52PubMedCrossRef Cloyd JC, Kriel RL. Bioavailability of rectally administered valproic acid syrup. Neurology 1981 Oct; 31(10): 1348–52PubMedCrossRef
8.
go back to reference Holmes GB, Rosenfeld WE, Graves NM, et al. Absorption of valproic acid suppositories in human volunteers. Arch Neurol 1989 Aug; 46(8): 906–9PubMedCrossRef Holmes GB, Rosenfeld WE, Graves NM, et al. Absorption of valproic acid suppositories in human volunteers. Arch Neurol 1989 Aug; 46(8): 906–9PubMedCrossRef
9.
go back to reference Dhillon S, Oxley J, Richens A. Bioavailability of diazepam after intravenous, oral and rectal administration in adult epileptic patients. Br J Clin Pharmacol 1982 Mar; 13(3): 427–32PubMedCrossRef Dhillon S, Oxley J, Richens A. Bioavailability of diazepam after intravenous, oral and rectal administration in adult epileptic patients. Br J Clin Pharmacol 1982 Mar; 13(3): 427–32PubMedCrossRef
10.
go back to reference Moolenaar F, Bakker S, Visser J, et al. Biopharmaceutics of rectal administration of drugs in man. IX: comparative biopharmaceutics of diazepam after single rectal, oral, intramuscular, and intravenous administration in man. Int J Pharm 1980 (5): 127-37 Moolenaar F, Bakker S, Visser J, et al. Biopharmaceutics of rectal administration of drugs in man. IX: comparative biopharmaceutics of diazepam after single rectal, oral, intramuscular, and intravenous administration in man. Int J Pharm 1980 (5): 127-37
11.
go back to reference Cloyd JC, Lalonde RL, Beniak TE, et al. A single-blind, crossover comparison of the pharmacokinetics and cognitive effects of a new diazepam rectal gel with intravenous diazepam. Epilepsia 1998 May; 39(5): 520–6PubMedCrossRef Cloyd JC, Lalonde RL, Beniak TE, et al. A single-blind, crossover comparison of the pharmacokinetics and cognitive effects of a new diazepam rectal gel with intravenous diazepam. Epilepsia 1998 May; 39(5): 520–6PubMedCrossRef
12.
go back to reference Viukari M, Salo H, Lamminsivu U, et al. Pharmacokinetics of diazepam administered rectally in geriatric patients: comparison of suppositories with rectal tubes in a cross-over study. Acta Pharmacol Toxicol (Copenh) 1981 Jul; 49(1): 59–64CrossRef Viukari M, Salo H, Lamminsivu U, et al. Pharmacokinetics of diazepam administered rectally in geriatric patients: comparison of suppositories with rectal tubes in a cross-over study. Acta Pharmacol Toxicol (Copenh) 1981 Jul; 49(1): 59–64CrossRef
13.
go back to reference Conway JM, Birnbaum AK, Kriel RL, et al. Relative bioavailability of topiramate administered rectally. Epilepsy Res 2003 May; 54(2-3): 91–6PubMedCrossRef Conway JM, Birnbaum AK, Kriel RL, et al. Relative bioavailability of topiramate administered rectally. Epilepsy Res 2003 May; 54(2-3): 91–6PubMedCrossRef
14.
go back to reference Birnbaum AK, Kriel RL, Burkhardt RT, et al. Rectal absorption of lamotrigine compressed tablets. Epilepsia 2000 Jul; 41(7): 850–3PubMedCrossRef Birnbaum AK, Kriel RL, Burkhardt RT, et al. Rectal absorption of lamotrigine compressed tablets. Epilepsia 2000 Jul; 41(7): 850–3PubMedCrossRef
15.
go back to reference Birnbaum AK, Kriel RL, Im Y, et al. Relative bioavailability of lamotrigine chewable dispersible tablets administered rectally. Pharmacotherapy 2001 Feb; 21(2): 158–62PubMedCrossRef Birnbaum AK, Kriel RL, Im Y, et al. Relative bioavailability of lamotrigine chewable dispersible tablets administered rectally. Pharmacotherapy 2001 Feb; 21(2): 158–62PubMedCrossRef
16.
go back to reference Kriel RL, Birnbaum AK, Cloyd JC, et al. Failure of absorption of gabapentin after rectal administration. Epilepsia 1997 Nov; 38(11): 1242–4PubMedCrossRef Kriel RL, Birnbaum AK, Cloyd JC, et al. Failure of absorption of gabapentin after rectal administration. Epilepsia 1997 Nov; 38(11): 1242–4PubMedCrossRef
17.
go back to reference Grossmann R, Maytal J, Fernando J. Rectal administration of felbamate in a child with Lennox-Gastaut syndrome. Neurology 1994 Nov; 44(10): 1979PubMedCrossRef Grossmann R, Maytal J, Fernando J. Rectal administration of felbamate in a child with Lennox-Gastaut syndrome. Neurology 1994 Nov; 44(10): 1979PubMedCrossRef
18.
go back to reference Moolenaar F, Jelsma RBH, Visser J, et al. Manipulation of rectal absorption rate of phenytoin in man. Pharm Weekbl [Sci] 1981; 3: 1051–6CrossRef Moolenaar F, Jelsma RBH, Visser J, et al. Manipulation of rectal absorption rate of phenytoin in man. Pharm Weekbl [Sci] 1981; 3: 1051–6CrossRef
19.
go back to reference Chang SW, da Silva JH, Kuhl DR. Absorption of rectally administered phenytoin: a pilot study. Ann Pharmacother 1999 Jul–Aug; 33(7-8): 781–6PubMedCrossRef Chang SW, da Silva JH, Kuhl DR. Absorption of rectally administered phenytoin: a pilot study. Ann Pharmacother 1999 Jul–Aug; 33(7-8): 781–6PubMedCrossRef
20.
go back to reference Burstein AH, Fisher KM, McPherson ML, et al. Absorption of phenytoin from rectal suppositories formulated with a polyethylene glycol base. Pharmacotherapy 2000 Jun; 20(5): 562–7PubMedCrossRef Burstein AH, Fisher KM, McPherson ML, et al. Absorption of phenytoin from rectal suppositories formulated with a polyethylene glycol base. Pharmacotherapy 2000 Jun; 20(5): 562–7PubMedCrossRef
21.
go back to reference Van Parys JA, Meinardi H. Survey of 260 epileptic patients treated with oxcarbazepine (Trileptal) on a named-patient basis. Epilepsy Res 1994 Sep; 19(1): 79–85PubMedCrossRef Van Parys JA, Meinardi H. Survey of 260 epileptic patients treated with oxcarbazepine (Trileptal) on a named-patient basis. Epilepsy Res 1994 Sep; 19(1): 79–85PubMedCrossRef
22.
go back to reference Bill PA, Vigonius U, Pohlmann H, et al. A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in adults with previously untreated epilepsy. Epilepsy Res 1997 Jun; 27(3): 195–204PubMedCrossRef Bill PA, Vigonius U, Pohlmann H, et al. A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in adults with previously untreated epilepsy. Epilepsy Res 1997 Jun; 27(3): 195–204PubMedCrossRef
23.
go back to reference Christe W, Kramer G, Vigonius U, et al. A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997 Mar; 26(3): 451–60PubMedCrossRef Christe W, Kramer G, Vigonius U, et al. A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997 Mar; 26(3): 451–60PubMedCrossRef
24.
go back to reference Glauser TA, Pippenger CE. Controversies in blood-level monitoring: reexamining its role in the treatment of epilepsy. Epilepsia 2000; 41Suppl. 8: S6–15PubMedCrossRef Glauser TA, Pippenger CE. Controversies in blood-level monitoring: reexamining its role in the treatment of epilepsy. Epilepsia 2000; 41Suppl. 8: S6–15PubMedCrossRef
25.
go back to reference van der Kuy PH, Koppejan EH, Wirtz JJ. Rectal absorption of oxcarbazepine. Pharm World Sci 2000 Aug; 22(4): 165–6PubMedCrossRef van der Kuy PH, Koppejan EH, Wirtz JJ. Rectal absorption of oxcarbazepine. Pharm World Sci 2000 Aug; 22(4): 165–6PubMedCrossRef
26.
go back to reference Mandrioli R, Ghedini N, Albani F, et al. Liquid Chromatographic determination of oxcarbazepine and its metabolites in plasma of epileptic patients after solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2003 Jan 5; 783(1): 253–63PubMedCrossRef Mandrioli R, Ghedini N, Albani F, et al. Liquid Chromatographic determination of oxcarbazepine and its metabolites in plasma of epileptic patients after solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2003 Jan 5; 783(1): 253–63PubMedCrossRef
27.
go back to reference Faigle JW, Menge GP. Pharmacokinetics and metabolic features of oxcarbazepine and their clinical significance: comparison with carbamazepine. Int Clin Psychopharmacol 1990; 5Suppl. 1: 73–82 Faigle JW, Menge GP. Pharmacokinetics and metabolic features of oxcarbazepine and their clinical significance: comparison with carbamazepine. Int Clin Psychopharmacol 1990; 5Suppl. 1: 73–82
28.
go back to reference van Hoogdalem E, de Boer AG, Breimer DD. Pharmacokinetics of rectal drug administration. Part I: general considerations and clinical applications of centrally acting drugs. Clin Pharmacokinet 1991 Jul; 21(1): 11–26PubMedCrossRef van Hoogdalem E, de Boer AG, Breimer DD. Pharmacokinetics of rectal drug administration. Part I: general considerations and clinical applications of centrally acting drugs. Clin Pharmacokinet 1991 Jul; 21(1): 11–26PubMedCrossRef
29.
go back to reference Flesch G, Tudor D, Denouel J, et al. Assessment of the bioequivalence of two oxcarbazepine oral suspensions versus a film-coated tablet in healthy subjects. Int J Clin Pharmacol Ther 2003 Jul; 41(7): 299–308PubMed Flesch G, Tudor D, Denouel J, et al. Assessment of the bioequivalence of two oxcarbazepine oral suspensions versus a film-coated tablet in healthy subjects. Int J Clin Pharmacol Ther 2003 Jul; 41(7): 299–308PubMed
Metadata
Title
Relative Bioavailability, Metabolism and Tolerability of Rectally Administered Oxcarbazepine Suspension
Authors
Pamela L. Clemens
Dr James C. Cloyd
Robert L. Kriel
Rory P. Remmel
Publication date
01-04-2007
Publisher
Springer International Publishing
Published in
Clinical Drug Investigation / Issue 4/2007
Print ISSN: 1173-2563
Electronic ISSN: 1179-1918
DOI
https://doi.org/10.2165/00044011-200727040-00003

Other articles of this Issue 4/2007

Clinical Drug Investigation 4/2007 Go to the issue

Original Research Article

Prevention of Osteoporosis