Skip to main content
Top

Open Access 16-04-2024 | REVIEW

Regulatory Effect of Osteocytes on Extramedullary and Bone Marrow Adipose Tissue Development and Function

Authors: Beata Lecka-Czernik, Mohd Parvez Khan, Joshua Letson, Sudipta Baroi, Amit Chougule

Published in: Current Osteoporosis Reports

Login to get access

Abstract

Purpose of Review

This review summarizes evidence on osteocyte support of extramedullary and bone marrow adipocyte development and discusses the role of endogenous osteocyte activities of nuclear receptors peroxisome proliferator-activated receptor gamma (PPARG) and alpha (PPARA) in this support.

Recent Findings

PPARG and PPARA proteins, key regulators of glucose and fatty acid metabolism, are highly expressed in osteocytes. They play significant roles in the regulation of osteocyte secretome and osteocyte bioenergetics; both activities contributing to the levels of systemic energy metabolism in part through an effect on metabolic function of extramedullary and bone marrow adipocytes. The PPARs-controlled osteocyte endocrine/paracrine activities, including sclerostin expression, directly regulate adipocyte function, while the PPARs-controlled osteocyte fuel utilization and oxidative phosphorylation contribute to the skeletal demands for glucose and fatty acids, whose availability is under the control of adipocytes.

Summary

Bone is an inherent element of systemic energy metabolism with PPAR nuclear receptors regulating osteocyte-adipocyte metabolic axes.
Literature
1.
go back to reference Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.CrossRefPubMed Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.CrossRefPubMed
2.
go back to reference Jansson JO, Palsdottir V, Hagg DA, Schele E, Dickson SL, Anesten F, et al. Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proc Natl Acad Sci U S A. 2018;115(2):427–32.CrossRefPubMed Jansson JO, Palsdottir V, Hagg DA, Schele E, Dickson SL, Anesten F, et al. Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proc Natl Acad Sci U S A. 2018;115(2):427–32.CrossRefPubMed
3.
go back to reference Jansson JO, Anesten F, Hagg D, Zlatkovic J, Dickson SL, Jansson PA, et al. The dual hypothesis of homeostatic body weight regulation, including gravity-dependent and leptin-dependent actions. Philos Trans R Soc Lond B Biol Sci. 1888;2023(378):20220219. Jansson JO, Anesten F, Hagg D, Zlatkovic J, Dickson SL, Jansson PA, et al. The dual hypothesis of homeostatic body weight regulation, including gravity-dependent and leptin-dependent actions. Philos Trans R Soc Lond B Biol Sci. 1888;2023(378):20220219.
4.
go back to reference •• Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone. 2021;147: 115913. This study showed for the first time that sclerostin is under transcriptional control of PPARG.CrossRefPubMedPubMedCentral •• Baroi S, Czernik PJ, Chougule A, Griffin PR, Lecka-Czernik B. PPARG in osteocytes controls sclerostin expression, bone mass, marrow adiposity and mediates TZD-induced bone loss. Bone. 2021;147: 115913. This study showed for the first time that sclerostin is under transcriptional control of PPARG.CrossRefPubMedPubMedCentral
5.
go back to reference •• Kim SP, Seward AH, Garcia-Diaz J, Alekos N, Gould NR, Aja S, et al. Peroxisome proliferator activated receptor-gamma in osteoblasts controls bone formation and fat mass by regulating sclerostin expression. iScience. 2023;26(7):106999. This study linked sclerostin levels in circulation with "beiging" of extramedullary adipose tissue.CrossRefPubMedPubMedCentral •• Kim SP, Seward AH, Garcia-Diaz J, Alekos N, Gould NR, Aja S, et al. Peroxisome proliferator activated receptor-gamma in osteoblasts controls bone formation and fat mass by regulating sclerostin expression. iScience. 2023;26(7):106999. This study linked sclerostin levels in circulation with "beiging" of extramedullary adipose tissue.CrossRefPubMedPubMedCentral
6.
go back to reference •• Chougule A, Baroi S, Czernik PJ, Crowe E, Chang MR, Griffin PR, et al. Osteocytes contribute via nuclear receptor PPAR-alpha to maintenance of bone and systemic energy metabolism. Front Endocrinol (Lausanne). 2023;14:1145467. This study discovered PPARA as a regulator of osteocyte secretome supporting bone marrow adipogenesis and "beiging" of extramedullary adipose tissue.CrossRefPubMed •• Chougule A, Baroi S, Czernik PJ, Crowe E, Chang MR, Griffin PR, et al. Osteocytes contribute via nuclear receptor PPAR-alpha to maintenance of bone and systemic energy metabolism. Front Endocrinol (Lausanne). 2023;14:1145467. This study discovered PPARA as a regulator of osteocyte secretome supporting bone marrow adipogenesis and "beiging" of extramedullary adipose tissue.CrossRefPubMed
7.
go back to reference • Brun J, Berthou F, Trajkovski M, Maechler P, Foti M, Bonnet N. Bone regulates browning and energy metabolism through mature osteoblast/osteocyte PPARgamma expression. Diabetes. 2017;66(10):2541–54. This is the first study indicating that PPARG in osteocytes regulates adipose tissue and systemic energy metabolism.CrossRefPubMed • Brun J, Berthou F, Trajkovski M, Maechler P, Foti M, Bonnet N. Bone regulates browning and energy metabolism through mature osteoblast/osteocyte PPARgamma expression. Diabetes. 2017;66(10):2541–54. This is the first study indicating that PPARG in osteocytes regulates adipose tissue and systemic energy metabolism.CrossRefPubMed
8.
go back to reference Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, et al. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab. 2013;18(5):749–58.CrossRefPubMed Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, et al. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab. 2013;18(5):749–58.CrossRefPubMed
9.
go back to reference Ukita M, Yamaguchi T, Ohata N, Tamura M. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells. J Cell Biochem. 2016;117(6):1419–28.CrossRefPubMed Ukita M, Yamaguchi T, Ohata N, Tamura M. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells. J Cell Biochem. 2016;117(6):1419–28.CrossRefPubMed
10.
go back to reference Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309(5737):1074–8.CrossRefPubMed Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309(5737):1074–8.CrossRefPubMed
11.
go back to reference • Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol. 2018;233(2):1156–67. This study provides in vitro and in vivo evidence for sclerostin role in support of bone marrow adipogenesis.CrossRefPubMed • Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol. 2018;233(2):1156–67. This study provides in vitro and in vivo evidence for sclerostin role in support of bone marrow adipogenesis.CrossRefPubMed
12.
go back to reference Kim SP, Frey JL, Li Z, Kushwaha P, Zoch ML, Tomlinson RE, et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc Natl Acad Sci U S A. 2017;114(52):E11238–47.CrossRefPubMedPubMedCentral Kim SP, Frey JL, Li Z, Kushwaha P, Zoch ML, Tomlinson RE, et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc Natl Acad Sci U S A. 2017;114(52):E11238–47.CrossRefPubMedPubMedCentral
13.
go back to reference Kim SP, Da H, Wang L, Taketo MM, Wan M, Riddle RC. Bone-derived sclerostin and Wnt/beta-catenin signaling regulate PDGFRalpha(+) adipoprogenitor cell differentiation. FASEB J. 2021;35(11): e21957.CrossRefPubMed Kim SP, Da H, Wang L, Taketo MM, Wan M, Riddle RC. Bone-derived sclerostin and Wnt/beta-catenin signaling regulate PDGFRalpha(+) adipoprogenitor cell differentiation. FASEB J. 2021;35(11): e21957.CrossRefPubMed
14.
go back to reference Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35(11):1979–91.CrossRefPubMedPubMedCentral Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35(11):1979–91.CrossRefPubMedPubMedCentral
15.
go back to reference Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J Bone Miner Res. 2017;32(2):373–84.CrossRefPubMed Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J Bone Miner Res. 2017;32(2):373–84.CrossRefPubMed
16.
go back to reference Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, et al. G(s)alpha deficiency in skeletal muscle leads to reduced muscle mass, fiber-type switching, and glucose intolerance without insulin resistance or deficiency. Am J Physiol Cell Physiol. 2009;296(4):C930–40.CrossRefPubMedPubMedCentral Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, et al. G(s)alpha deficiency in skeletal muscle leads to reduced muscle mass, fiber-type switching, and glucose intolerance without insulin resistance or deficiency. Am J Physiol Cell Physiol. 2009;296(4):C930–40.CrossRefPubMedPubMedCentral
17.
go back to reference Ma YH, Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, et al. Circulating sclerostin associated with vertebral bone marrow fat in older men but not women. J Clin Endocrinol Metab. 2014;99(12):E2584–90.CrossRefPubMedPubMedCentral Ma YH, Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, et al. Circulating sclerostin associated with vertebral bone marrow fat in older men but not women. J Clin Endocrinol Metab. 2014;99(12):E2584–90.CrossRefPubMedPubMedCentral
18.
go back to reference Courtalin M, Bertheaume N, Badr S, During A, Lombardo D, Deken V, et al. Relationships between circulating sclerostin, bone marrow adiposity, other adipose deposits and lean mass in post-menopausal women. Int J Mol Sci. 2023;24(6):5922. Courtalin M, Bertheaume N, Badr S, During A, Lombardo D, Deken V, et al. Relationships between circulating sclerostin, bone marrow adiposity, other adipose deposits and lean mass in post-menopausal women. Int J Mol Sci. 2023;24(6):5922.
19.
go back to reference Sheng Z, Tong D, Ou Y, Zhang H, Zhang Z, Li S, et al. Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin Endocrinol (Oxf). 2012;76(6):797–801.CrossRefPubMed Sheng Z, Tong D, Ou Y, Zhang H, Zhang Z, Li S, et al. Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin Endocrinol (Oxf). 2012;76(6):797–801.CrossRefPubMed
20.
go back to reference Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease–related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97(8):E1473–7.CrossRefPubMed Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease–related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97(8):E1473–7.CrossRefPubMed
21.
go back to reference Tozzi R, Masi D, Cipriani F, Contini S, Gangitano E, Spoltore ME, et al. Circulating SIRT1 and sclerostin correlates with bone status in young women with different degrees of adiposity. Nutrients. 2022;14(5):983. Tozzi R, Masi D, Cipriani F, Contini S, Gangitano E, Spoltore ME, et al. Circulating SIRT1 and sclerostin correlates with bone status in young women with different degrees of adiposity. Nutrients. 2022;14(5):983.
22.
go back to reference Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, et al. PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine. 2016;10:174–84.CrossRefPubMedPubMedCentral Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, et al. PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine. 2016;10:174–84.CrossRefPubMedPubMedCentral
23.
go back to reference •• Baroi S, Czernik PJ, Khan MP, Letson J, Crowe E, Chougule A, et al. PPARG in osteocytes controls cell bioenergetics and systemic energy metabolism independently of sclerostin levels in circulation. bioRxiv. 2024. doi: https://doi.org/10.1101/2024.04.04.588029. This study showed that osteocyte bioenergetics under control of PPARG contribute significantly to the levels of systemic energy metabolism. •• Baroi S, Czernik PJ, Khan MP, Letson J, Crowe E, Chougule A, et al. PPARG in osteocytes controls cell bioenergetics and systemic energy metabolism independently of sclerostin levels in circulation. bioRxiv. 2024. doi: https://​doi.​org/​10.​1101/​2024.​04.​04.​588029.​ This study showed that osteocyte bioenergetics under control of PPARG contribute significantly to the levels of systemic energy metabolism.
25.
go back to reference Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.CrossRefPubMedPubMedCentral Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.CrossRefPubMedPubMedCentral
26.
go back to reference Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92.CrossRefPubMedPubMedCentral Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92.CrossRefPubMedPubMedCentral
27.
go back to reference Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56.CrossRefPubMedPubMedCentral Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56.CrossRefPubMedPubMedCentral
28.
go back to reference Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2(3):165–71.CrossRefPubMed Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2(3):165–71.CrossRefPubMed
29.
go back to reference Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone. 2018;110:134–40.CrossRefPubMedPubMedCentral Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone. 2018;110:134–40.CrossRefPubMedPubMedCentral
30.
go back to reference Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: New insights from an “old” molecule. Cell Cycle. 2010;9(18):3648–54.CrossRefPubMedPubMedCentral Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: New insights from an “old” molecule. Cell Cycle. 2010;9(18):3648–54.CrossRefPubMedPubMedCentral
31.
go back to reference Aaron N, Kraakman MJ, Zhou Q, Liu Q, Costa S, Yang J, et al. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. Elife. 2021;10:e69209. Aaron N, Kraakman MJ, Zhou Q, Liu Q, Costa S, Yang J, et al. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. Elife. 2021;10:e69209.
32.
go back to reference Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 2021;33(6):1124-36 e5.CrossRefPubMedPubMedCentral Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 2021;33(6):1124-36 e5.CrossRefPubMedPubMedCentral
33.
go back to reference Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, et al. Oxylipin-PPARgamma-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab. 2023;35(4):667-84 e6.CrossRefPubMedPubMedCentral Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, et al. Oxylipin-PPARgamma-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab. 2023;35(4):667-84 e6.CrossRefPubMedPubMedCentral
34.
go back to reference Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov. 2023;9(1):412.CrossRefPubMedPubMedCentral Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov. 2023;9(1):412.CrossRefPubMedPubMedCentral
35.
go back to reference Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11(1):3097.CrossRefPubMedPubMedCentral Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11(1):3097.CrossRefPubMedPubMedCentral
36.
go back to reference Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.CrossRefPubMed Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.CrossRefPubMed
37.
go back to reference Shin E, Koo JS. The role of adipokines and bone marrow adipocytes in breast cancer bone metastasis. Int J Mol Sci. 2020;21(14):4967. Shin E, Koo JS. The role of adipokines and bone marrow adipocytes in breast cancer bone metastasis. Int J Mol Sci. 2020;21(14):4967.
38.
go back to reference Salamanna F, Contartese D, Errani C, Sartori M, Borsari V, Giavaresi G. Role of bone marrow adipocytes in bone metastasis development and progression: a systematic review. Front Endocrinol (Lausanne). 2023;14:1207416.CrossRefPubMed Salamanna F, Contartese D, Errani C, Sartori M, Borsari V, Giavaresi G. Role of bone marrow adipocytes in bone metastasis development and progression: a systematic review. Front Endocrinol (Lausanne). 2023;14:1207416.CrossRefPubMed
39.
go back to reference Morris EV, Edwards CM. Bone marrow adipose tissue: a new player in cancer metastasis to bone. Front Endocrinol (Lausanne). 2016;7:90.CrossRefPubMed Morris EV, Edwards CM. Bone marrow adipose tissue: a new player in cancer metastasis to bone. Front Endocrinol (Lausanne). 2016;7:90.CrossRefPubMed
40.
go back to reference Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis. 2015;32(4):353–68.CrossRefPubMedPubMedCentral Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis. 2015;32(4):353–68.CrossRefPubMedPubMedCentral
41.
go back to reference Diedrich JD, Rajagurubandara E, Herroon MK, Mahapatra G, Huttemann M, Podgorski I. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget. 2016;7(40):64854–77.CrossRefPubMedPubMedCentral Diedrich JD, Rajagurubandara E, Herroon MK, Mahapatra G, Huttemann M, Podgorski I. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget. 2016;7(40):64854–77.CrossRefPubMedPubMedCentral
42.
go back to reference Templeton ZS, Lie WR, Wang W, Rosenberg-Hasson Y, Alluri RV, Tamaresis JS, et al. Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia. 2015;17(12):849–61.CrossRefPubMedPubMedCentral Templeton ZS, Lie WR, Wang W, Rosenberg-Hasson Y, Alluri RV, Tamaresis JS, et al. Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia. 2015;17(12):849–61.CrossRefPubMedPubMedCentral
43.
go back to reference Liu C, Zhao Q, Yu X. Bone marrow adipocytes, adipocytokines, and breast cancer cells: novel implications in bone metastasis of breast cancer. Front Oncol. 2020;10: 561595.CrossRefPubMedPubMedCentral Liu C, Zhao Q, Yu X. Bone marrow adipocytes, adipocytokines, and breast cancer cells: novel implications in bone metastasis of breast cancer. Front Oncol. 2020;10: 561595.CrossRefPubMedPubMedCentral
Metadata
Title
Regulatory Effect of Osteocytes on Extramedullary and Bone Marrow Adipose Tissue Development and Function
Authors
Beata Lecka-Czernik
Mohd Parvez Khan
Joshua Letson
Sudipta Baroi
Amit Chougule
Publication date
16-04-2024
Publisher
Springer US
Published in
Current Osteoporosis Reports
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-024-00871-5