Skip to main content
Top
Published in: BMC Urology 1/2015

Open Access 01-12-2015 | Review

Regulation of urinary bladder function by protein kinase C in physiology and pathophysiology

Authors: Joseph A. Hypolite, Anna P. Malykhina

Published in: BMC Urology | Issue 1/2015

Login to get access

Abstract

Background

Protein kinase C (PKC) is expressed in many tissues and organs including the urinary bladder, however, its role in bladder physiology and pathophysiology is still evolving. The aim of this review was to evaluate available evidence on the involvement of PKC in regulation of detrusor contractility, muscle tone of the bladder wall, spontaneous contractile activity and bladder function under physiological and pathophysiological conditions.

Methods

This is a non-systematic review of the published literature which summarizes the available animal and human data on the role of PKC signaling in the urinary bladder under different physiological and pathophysiological conditions. A wide PubMed search was performed including the combination of the following keywords: “urinary bladder”, “PKC”, “detrusor contractility”, “bladder smooth muscle”, “detrusor relaxation”, “peak force”, “detrusor underactivity”, “partial bladder outlet obstruction”, “voltage-gated channels”, “bladder nerves”, “PKC inhibitors”, “PKC activators”. Retrieved articles were individually screened for the relevance to the topic of this review with 91 citations being selected and included in the data analysis.

Discussion

Urinary bladder function includes the ability to store urine at low intravesical pressure followed by a subsequent release of bladder contents due to a rapid phasic contraction that is maintained long enough to ensure complete emptying. This review summarizes the current concepts regarding the potential contribution of PKC to contractility, physiological voiding, and related signaling mechanisms involved in the control of both the storage and emptying phases of the micturition cycle, and in dysfunctional voiding. Previous studies linked PKC activation exclusively with an increase in generation of the peak force of smooth muscle contraction, and maximum force generation in the lower urinary tract. More recent data suggests that PKC presents a broader range of effects on urinary bladder function including regulation of storage, emptying, excitability of the detrusor, and bladder innervation.

Summary

In this review, we evaluated the mechanisms of peripheral and local regulation of PKC signaling in the urinary bladder, and their impact on different phases of the micturition cycle under physiological and pathophysiological conditions.
Literature
1.
go back to reference Andersson KE. Changes in bladder tone during filling: pharmacological aspects. Scand J Urol Nephrol Suppl. 1999;201:67–72. discussion 76–99.CrossRefPubMed Andersson KE. Changes in bladder tone during filling: pharmacological aspects. Scand J Urol Nephrol Suppl. 1999;201:67–72. discussion 76–99.CrossRefPubMed
2.
go back to reference Andersson KE. Detrusor myocyte activity and afferent signaling. Neurourol Urodyn. 2010;29(1):97–106.CrossRefPubMed Andersson KE. Detrusor myocyte activity and afferent signaling. Neurourol Urodyn. 2010;29(1):97–106.CrossRefPubMed
3.
go back to reference Boopathi E, Hypolite JA, Zderic SA, Gomes CM, Malkowicz B, Liou HC, et al. GATA-6 and NF-kappaB activate CPI-17 gene transcription and regulate Ca2+ sensitization of smooth muscle contraction. Mol Cell Biol. 2013;33(5):1085–102.PubMedCentralCrossRefPubMed Boopathi E, Hypolite JA, Zderic SA, Gomes CM, Malkowicz B, Liou HC, et al. GATA-6 and NF-kappaB activate CPI-17 gene transcription and regulate Ca2+ sensitization of smooth muscle contraction. Mol Cell Biol. 2013;33(5):1085–102.PubMedCentralCrossRefPubMed
4.
go back to reference Brading AF. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol. 2006;570(Pt 1):13–22.PubMedCentralCrossRefPubMed Brading AF. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol. 2006;570(Pt 1):13–22.PubMedCentralCrossRefPubMed
5.
go back to reference Drake MJ, Harvey IJ, Gillespie JI. Autonomous activity in the isolated guinea pig bladder. Exp Physiol. 2003;88(1):19–30.CrossRefPubMed Drake MJ, Harvey IJ, Gillespie JI. Autonomous activity in the isolated guinea pig bladder. Exp Physiol. 2003;88(1):19–30.CrossRefPubMed
6.
go back to reference Gillespie JI. Modulation of autonomous contractile activity in the isolated whole bladder of the guinea pig. BJU Int. 2004;93(3):393–400.CrossRefPubMed Gillespie JI. Modulation of autonomous contractile activity in the isolated whole bladder of the guinea pig. BJU Int. 2004;93(3):393–400.CrossRefPubMed
7.
go back to reference Hypolite JA, Chang S, LaBelle E, Babu GJ, Periasamy M, Wein AJ, et al. Deletion of SM-B, the high ATPase isoform of myosin, upregulates the PKC-mediated signal transduction pathway in murine urinary bladder smooth muscle. Am J Physiol Renal Physiol. 2009;296(3):F658–665.PubMedCentralCrossRefPubMed Hypolite JA, Chang S, LaBelle E, Babu GJ, Periasamy M, Wein AJ, et al. Deletion of SM-B, the high ATPase isoform of myosin, upregulates the PKC-mediated signal transduction pathway in murine urinary bladder smooth muscle. Am J Physiol Renal Physiol. 2009;296(3):F658–665.PubMedCentralCrossRefPubMed
8.
go back to reference Hypolite JA, Lei Q, Chang S, Zderic SA, Butler S, Wein AJ, et al. Spontaneous and evoked contractions are regulated by PKC-mediated signaling in detrusor smooth muscle: involvement of BK channels. Am J Physiol Renal Physiol. 2013;304(5):F451–462.PubMedCentralCrossRefPubMed Hypolite JA, Lei Q, Chang S, Zderic SA, Butler S, Wein AJ, et al. Spontaneous and evoked contractions are regulated by PKC-mediated signaling in detrusor smooth muscle: involvement of BK channels. Am J Physiol Renal Physiol. 2013;304(5):F451–462.PubMedCentralCrossRefPubMed
9.
go back to reference Hypolite JA, Wein AJ, Haugaard N, Levin RM. Role of substrates in the maintenance of contractility of the rabbit urinary bladder. Pharmacology. 1991;42(4):202–10.CrossRefPubMed Hypolite JA, Wein AJ, Haugaard N, Levin RM. Role of substrates in the maintenance of contractility of the rabbit urinary bladder. Pharmacology. 1991;42(4):202–10.CrossRefPubMed
10.
go back to reference Levin RM, Hypolite J, Longhurst PA, Wein AJ. Comparison of the contractile and metabolic effects of muscarinic stimulation with those of KCl. Pharmacology. 1991;42(3):142–50.CrossRefPubMed Levin RM, Hypolite J, Longhurst PA, Wein AJ. Comparison of the contractile and metabolic effects of muscarinic stimulation with those of KCl. Pharmacology. 1991;42(3):142–50.CrossRefPubMed
11.
go back to reference Levin RM, Ruggieri MR, Velagapudi S, Gordon D, Altman B, Wein AJ. Relevance of spontaneous activity to urinary bladder function: an in vitro and in vivo study. J Urol. 1986;136(2):517–21.PubMed Levin RM, Ruggieri MR, Velagapudi S, Gordon D, Altman B, Wein AJ. Relevance of spontaneous activity to urinary bladder function: an in vitro and in vivo study. J Urol. 1986;136(2):517–21.PubMed
12.
go back to reference Wein AJ. Physiology of micturition. Clin Geriatr Med. 1986;2(4):689–99.PubMed Wein AJ. Physiology of micturition. Clin Geriatr Med. 1986;2(4):689–99.PubMed
13.
go back to reference Zhao Y, Wein AJ, Levin RM. Role of calcium in mediating the biphasic contraction of the rabbit urinary bladder. Gen Pharmacol. 1993;24(3):727–31.CrossRefPubMed Zhao Y, Wein AJ, Levin RM. Role of calcium in mediating the biphasic contraction of the rabbit urinary bladder. Gen Pharmacol. 1993;24(3):727–31.CrossRefPubMed
14.
go back to reference Schneider T, Fetscher C, Krege S, Michel MC. Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther. 2004;309(3):1148–53.CrossRefPubMed Schneider T, Fetscher C, Krege S, Michel MC. Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther. 2004;309(3):1148–53.CrossRefPubMed
15.
go back to reference Frazier EP, Peters SL, Braverman AS, Ruggieri Sr MR, Michel MC. Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4–6):449–62.PubMedCentralCrossRefPubMed Frazier EP, Peters SL, Braverman AS, Ruggieri Sr MR, Michel MC. Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4–6):449–62.PubMedCentralCrossRefPubMed
16.
go back to reference Frazier EP, Braverman AS, Peters SL, Michel MC, Ruggieri Sr MR. Does phospholipase C mediate muscarinic receptor-induced rat urinary bladder contraction? J Pharmacol Exp Ther. 2007;322(3):998–1002.CrossRefPubMed Frazier EP, Braverman AS, Peters SL, Michel MC, Ruggieri Sr MR. Does phospholipase C mediate muscarinic receptor-induced rat urinary bladder contraction? J Pharmacol Exp Ther. 2007;322(3):998–1002.CrossRefPubMed
17.
go back to reference Durlu-Kandilci NT, Brading AF. Involvement of Rho kinase and protein kinase C in carbachol-induced calcium sensitization in beta-escin skinned rat and guinea-pig bladders. Br J Pharmacol. 2006;148(3):376–84.PubMedCentralCrossRefPubMed Durlu-Kandilci NT, Brading AF. Involvement of Rho kinase and protein kinase C in carbachol-induced calcium sensitization in beta-escin skinned rat and guinea-pig bladders. Br J Pharmacol. 2006;148(3):376–84.PubMedCentralCrossRefPubMed
18.
go back to reference Fleichman M, Schneider T, Fetscher C, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases. J Pharmacol Exp Ther. 2004;308(1):54–8.CrossRefPubMed Fleichman M, Schneider T, Fetscher C, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases. J Pharmacol Exp Ther. 2004;308(1):54–8.CrossRefPubMed
19.
go back to reference An JY, Yun HS, Lee YP, Yang SJ, Shim JO, Jeong JH, et al. The intracellular pathway of the acetylcholine-induced contraction in cat detrusor muscle cells. Br J Pharmacol. 2002;137(7):1001–10.PubMedCentralCrossRefPubMed An JY, Yun HS, Lee YP, Yang SJ, Shim JO, Jeong JH, et al. The intracellular pathway of the acetylcholine-induced contraction in cat detrusor muscle cells. Br J Pharmacol. 2002;137(7):1001–10.PubMedCentralCrossRefPubMed
20.
go back to reference Aburto T, Jinsi A, Zhu Q, Deth RC. Involvement of protein kinase C activation in alpha 2-adrenoceptor-mediated contractions of rabbit saphenous vein. Eur J Pharmacol. 1995;277(1):35–44.CrossRefPubMed Aburto T, Jinsi A, Zhu Q, Deth RC. Involvement of protein kinase C activation in alpha 2-adrenoceptor-mediated contractions of rabbit saphenous vein. Eur J Pharmacol. 1995;277(1):35–44.CrossRefPubMed
21.
go back to reference Dessy C, Kim I, Sougnez CL, Laporte R, Morgan KG. A role for MAP kinase in differentiated smooth muscle contraction evoked by alpha-adrenoceptor stimulation. Am J Physiol. 1998;275(4 Pt 1):C1081–1086.PubMed Dessy C, Kim I, Sougnez CL, Laporte R, Morgan KG. A role for MAP kinase in differentiated smooth muscle contraction evoked by alpha-adrenoceptor stimulation. Am J Physiol. 1998;275(4 Pt 1):C1081–1086.PubMed
22.
go back to reference Hypolite JA, Chang S, Wein AJ, Chacko S, Malykhina AP. Protein kinase C modulates frequency of micturition and non-voiding contractions in the urinary bladder via neuronal and myogenic mechanisms. BMC Urol. 2015;15(1):34.PubMedCentralCrossRefPubMed Hypolite JA, Chang S, Wein AJ, Chacko S, Malykhina AP. Protein kinase C modulates frequency of micturition and non-voiding contractions in the urinary bladder via neuronal and myogenic mechanisms. BMC Urol. 2015;15(1):34.PubMedCentralCrossRefPubMed
23.
go back to reference Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50(2):279–90.PubMed Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50(2):279–90.PubMed
24.
go back to reference Wang T, Kendig DM, Smolock EM, Moreland RS. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase. Am J Physiol Renal Physiol. 2009;297(6):F1534–1542.PubMedCentralCrossRefPubMed Wang T, Kendig DM, Smolock EM, Moreland RS. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase. Am J Physiol Renal Physiol. 2009;297(6):F1534–1542.PubMedCentralCrossRefPubMed
25.
go back to reference Chang S, Hypolite JA, Mohanan S, Zderic SA, Wein AJ, Chacko S. Alteration of the PKC-mediated signaling pathway for smooth muscle contraction in obstruction-induced hypertrophy of the urinary bladder. Lab Invest. 2009;89(7):823–32.PubMedCentralCrossRefPubMed Chang S, Hypolite JA, Mohanan S, Zderic SA, Wein AJ, Chacko S. Alteration of the PKC-mediated signaling pathway for smooth muscle contraction in obstruction-induced hypertrophy of the urinary bladder. Lab Invest. 2009;89(7):823–32.PubMedCentralCrossRefPubMed
26.
go back to reference Leiria LO, Sollon C, Calixto MC, Lintomen L, Monica FZ, Anhe GF, et al. Role of PKC and CaV1.2 in detrusor overactivity in a model of obesity associated with insulin resistance in mice. PLoS One. 2012;7(11):e48507.PubMedCentralCrossRefPubMed Leiria LO, Sollon C, Calixto MC, Lintomen L, Monica FZ, Anhe GF, et al. Role of PKC and CaV1.2 in detrusor overactivity in a model of obesity associated with insulin resistance in mice. PLoS One. 2012;7(11):e48507.PubMedCentralCrossRefPubMed
27.
go back to reference Stanton MC, Austin JC, Delaney DP, Gosfield A, Marx JO, Zderic SA, et al. Partial bladder outlet obstruction selectively abolishes protein kinase C induced contraction of rabbit detrusor smooth muscle. J Urol. 2006;176(6 Pt 1):2716–21.CrossRefPubMed Stanton MC, Austin JC, Delaney DP, Gosfield A, Marx JO, Zderic SA, et al. Partial bladder outlet obstruction selectively abolishes protein kinase C induced contraction of rabbit detrusor smooth muscle. J Urol. 2006;176(6 Pt 1):2716–21.CrossRefPubMed
28.
go back to reference Wang T, Kendig DM, Trappanese DM, Smolock EM, Moreland RS. Phorbol 12,13-dibutyrate-induced, protein kinase C-mediated contraction of rabbit bladder smooth muscle. Front Pharmacol. 2012;2:83.PubMedCentralCrossRefPubMed Wang T, Kendig DM, Trappanese DM, Smolock EM, Moreland RS. Phorbol 12,13-dibutyrate-induced, protein kinase C-mediated contraction of rabbit bladder smooth muscle. Front Pharmacol. 2012;2:83.PubMedCentralCrossRefPubMed
29.
go back to reference Ekman M, Andersson KE, Arner A. Receptor-induced phasic activity of newborn mouse bladders is inhibited by protein kinase C and involves T-type Ca2+ channels. BJU Int. 2009;104(5):690–7.CrossRefPubMed Ekman M, Andersson KE, Arner A. Receptor-induced phasic activity of newborn mouse bladders is inhibited by protein kinase C and involves T-type Ca2+ channels. BJU Int. 2009;104(5):690–7.CrossRefPubMed
30.
go back to reference Somogyi GT, Tanowitz M, Zernova G, de Groat WC. M1 muscarinic receptor-induced facilitation of ACh and noradrenaline release in the rat bladder is mediated by protein kinase C. J Physiol. 1996;496(Pt 1):245–54.PubMedCentralCrossRefPubMed Somogyi GT, Tanowitz M, Zernova G, de Groat WC. M1 muscarinic receptor-induced facilitation of ACh and noradrenaline release in the rat bladder is mediated by protein kinase C. J Physiol. 1996;496(Pt 1):245–54.PubMedCentralCrossRefPubMed
31.
go back to reference Hristov KL, Smith AC, Parajuli SP, Malysz J, Petkov GV. Large-conductance voltage- and Ca2 + −activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle. Am J Physiol Cell Physiol. 2014;306(5):C460–470.PubMedCentralCrossRefPubMed Hristov KL, Smith AC, Parajuli SP, Malysz J, Petkov GV. Large-conductance voltage- and Ca2 + −activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle. Am J Physiol Cell Physiol. 2014;306(5):C460–470.PubMedCentralCrossRefPubMed
32.
go back to reference Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R571–584.PubMedCentralCrossRefPubMed Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R571–584.PubMedCentralCrossRefPubMed
33.
go back to reference Huster M, Frei E, Hofmann F, Wegener JW. A complex of Ca(V)1.2/PKC is involved in muscarinic signaling in smooth muscle. FASEB J. 2010;24(8):2651–9.CrossRefPubMed Huster M, Frei E, Hofmann F, Wegener JW. A complex of Ca(V)1.2/PKC is involved in muscarinic signaling in smooth muscle. FASEB J. 2010;24(8):2651–9.CrossRefPubMed
34.
go back to reference Liu SH, Lin-Shiau SY. Protein kinase c regulates purinergic component of neurogenic contractions in mouse bladder. J Urol. 2000;164(5):1764–7.CrossRefPubMed Liu SH, Lin-Shiau SY. Protein kinase c regulates purinergic component of neurogenic contractions in mouse bladder. J Urol. 2000;164(5):1764–7.CrossRefPubMed
35.
go back to reference Weng TI, Chen WJ, Liu SH. Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway. Toxicol Appl Pharmacol. 2005;208(2):163–9.CrossRefPubMed Weng TI, Chen WJ, Liu SH. Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway. Toxicol Appl Pharmacol. 2005;208(2):163–9.CrossRefPubMed
36.
go back to reference Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol. 2012;9(1):30–40.CrossRef Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol. 2012;9(1):30–40.CrossRef
37.
go back to reference Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca2+ sources. J Pharmacol Exp Ther. 2004;308(1):47–53.CrossRefPubMed Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca2+ sources. J Pharmacol Exp Ther. 2004;308(1):47–53.CrossRefPubMed
38.
go back to reference Wuest M, Hiller N, Braeter M, Hakenberg OW, Wirth MP, Ravens U. Contribution of Ca2+ influx to carbachol-induced detrusor contraction is different in human urinary bladder compared to pig and mouse. Eur J Pharmacol. 2007;565(1–3):180–9.CrossRefPubMed Wuest M, Hiller N, Braeter M, Hakenberg OW, Wirth MP, Ravens U. Contribution of Ca2+ influx to carbachol-induced detrusor contraction is different in human urinary bladder compared to pig and mouse. Eur J Pharmacol. 2007;565(1–3):180–9.CrossRefPubMed
39.
go back to reference Zderic SA, Sillen U, Liu GH, Snyder 3rd MC, Duckett JW, Gong C, et al. Developmental aspects of excitation contraction coupling of rabbit bladder smooth muscle. J Urol. 1994;152(2 Pt 2):679–81.PubMed Zderic SA, Sillen U, Liu GH, Snyder 3rd MC, Duckett JW, Gong C, et al. Developmental aspects of excitation contraction coupling of rabbit bladder smooth muscle. J Urol. 1994;152(2 Pt 2):679–81.PubMed
40.
go back to reference Buckner SA, Milicic I, Daza AV, Coghlan MJ, Gopalakrishnan M. Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators. Br J Pharmacol. 2002;135(3):639–48.PubMedCentralCrossRefPubMed Buckner SA, Milicic I, Daza AV, Coghlan MJ, Gopalakrishnan M. Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators. Br J Pharmacol. 2002;135(3):639–48.PubMedCentralCrossRefPubMed
41.
go back to reference Uchida W, Masuda N, Shirai Y, Shibasaki K, Satoh N, Takenada T. The role of extracellular Ca2+ in carbachol-induced tonic contraction of the pig detrusor smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1994;350(4):398–402.CrossRefPubMed Uchida W, Masuda N, Shirai Y, Shibasaki K, Satoh N, Takenada T. The role of extracellular Ca2+ in carbachol-induced tonic contraction of the pig detrusor smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1994;350(4):398–402.CrossRefPubMed
42.
go back to reference Masters JG, Neal DE, Gillespie JI. The contribution of intracellular Ca2+ release to contraction in human bladder smooth muscle. Br J Pharmacol. 1999;127(4):996–1002.PubMedCentralCrossRefPubMed Masters JG, Neal DE, Gillespie JI. The contribution of intracellular Ca2+ release to contraction in human bladder smooth muscle. Br J Pharmacol. 1999;127(4):996–1002.PubMedCentralCrossRefPubMed
43.
go back to reference Kajioka S, Nakayama S, McMurray G, Abe K, Brading AF. Ca(2+) channel properties in smooth muscle cells of the urinary bladder from pig and human. Eur J Pharmacol. 2002;443(1–3):19–29.CrossRefPubMed Kajioka S, Nakayama S, McMurray G, Abe K, Brading AF. Ca(2+) channel properties in smooth muscle cells of the urinary bladder from pig and human. Eur J Pharmacol. 2002;443(1–3):19–29.CrossRefPubMed
44.
go back to reference Levin RM, Hypolite J, Ruggieri MR, Longhurst PA, Wein AJ. Effects of muscarinic stimulation on intracellular calcium in the rabbit bladder: comparison with metabolic response. Pharmacology. 1989;39(2):69–77.CrossRefPubMed Levin RM, Hypolite J, Ruggieri MR, Longhurst PA, Wein AJ. Effects of muscarinic stimulation on intracellular calcium in the rabbit bladder: comparison with metabolic response. Pharmacology. 1989;39(2):69–77.CrossRefPubMed
45.
go back to reference Herrera GM, Heppner TJ, Nelson MT. Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R60–68.PubMed Herrera GM, Heppner TJ, Nelson MT. Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R60–68.PubMed
46.
go back to reference Bonev AD, Nelson MT. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am J Physiol. 1993;264(5 Pt 1):C1190–1200.PubMed Bonev AD, Nelson MT. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am J Physiol. 1993;264(5 Pt 1):C1190–1200.PubMed
47.
go back to reference Gopalakrishnan M, Whiteaker KL, Molinari EJ, Davis-Taber R, Scott VE, Shieh CC, et al. Characterization of the ATP-sensitive potassium channels (KATP) expressed in guinea pig bladder smooth muscle cells. J Pharmacol Exp Ther. 1999;289(1):551–8.PubMed Gopalakrishnan M, Whiteaker KL, Molinari EJ, Davis-Taber R, Scott VE, Shieh CC, et al. Characterization of the ATP-sensitive potassium channels (KATP) expressed in guinea pig bladder smooth muscle cells. J Pharmacol Exp Ther. 1999;289(1):551–8.PubMed
48.
go back to reference Buckner SA, Milicic I, Daza A, Davis-Taber R, Scott VE, Sullivan JP, et al. Pharmacological and molecular analysis of ATP-sensitive K(+) channels in the pig and human detrusor. Eur J Pharmacol. 2000;400(2–3):287–95.CrossRefPubMed Buckner SA, Milicic I, Daza A, Davis-Taber R, Scott VE, Sullivan JP, et al. Pharmacological and molecular analysis of ATP-sensitive K(+) channels in the pig and human detrusor. Eur J Pharmacol. 2000;400(2–3):287–95.CrossRefPubMed
50.
go back to reference Edwards G, Henshaw M, Miller M, Weston AH. Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro. Br J Pharmacol. 1991;102(3):679–86.PubMedCentralCrossRefPubMed Edwards G, Henshaw M, Miller M, Weston AH. Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro. Br J Pharmacol. 1991;102(3):679–86.PubMedCentralCrossRefPubMed
51.
go back to reference Malmgren A, Andersson KE, Sjogren C, Andersson PO. Effects of pinacidil and cromakalim (BRL 34915) on bladder function in rats with detrusor instability. J Urol. 1989;142(4):1134–8.PubMed Malmgren A, Andersson KE, Sjogren C, Andersson PO. Effects of pinacidil and cromakalim (BRL 34915) on bladder function in rats with detrusor instability. J Urol. 1989;142(4):1134–8.PubMed
52.
go back to reference Bonev AD, Nelson MT. Muscarinic inhibition of ATP-sensitive K+ channels by protein kinase C in urinary bladder smooth muscle. Am J Physiol. 1993;265(6 Pt 1):C1723–1728.PubMed Bonev AD, Nelson MT. Muscarinic inhibition of ATP-sensitive K+ channels by protein kinase C in urinary bladder smooth muscle. Am J Physiol. 1993;265(6 Pt 1):C1723–1728.PubMed
53.
go back to reference Frayer SM, Barber LA, Vasko MR. Activation of protein kinase C enhances peptide release from rat spinal cord slices. Neurosci Lett. 1999;265(1):17–20.CrossRefPubMed Frayer SM, Barber LA, Vasko MR. Activation of protein kinase C enhances peptide release from rat spinal cord slices. Neurosci Lett. 1999;265(1):17–20.CrossRefPubMed
54.
go back to reference Braverman AS, Doumanian LR, Ruggieri Sr MR. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder. J Pharmacol Exp Ther. 2006;316(2):875–80.CrossRefPubMed Braverman AS, Doumanian LR, Ruggieri Sr MR. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder. J Pharmacol Exp Ther. 2006;316(2):875–80.CrossRefPubMed
55.
go back to reference Longhurst PA, Leggett RE, Briscoe JA. Characterization of the functional muscarinic receptors in the rat urinary bladder. Br J Pharmacol. 1995;116(4):2279–85.PubMedCentralCrossRefPubMed Longhurst PA, Leggett RE, Briscoe JA. Characterization of the functional muscarinic receptors in the rat urinary bladder. Br J Pharmacol. 1995;116(4):2279–85.PubMedCentralCrossRefPubMed
56.
go back to reference Boberg L, Poljakovic M, Rahman A, Eccles R, Arner A. Role of Rho-kinase and protein kinase C during contraction of hypertrophic detrusor in mice with partial urinary bladder outlet obstruction. BJU Int. 2012;109(1):132–40.CrossRefPubMed Boberg L, Poljakovic M, Rahman A, Eccles R, Arner A. Role of Rho-kinase and protein kinase C during contraction of hypertrophic detrusor in mice with partial urinary bladder outlet obstruction. BJU Int. 2012;109(1):132–40.CrossRefPubMed
57.
go back to reference Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem. 1995;118(6):1104–7.PubMed Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem. 1995;118(6):1104–7.PubMed
58.
go back to reference Eto M, Senba S, Morita F, Yazawa M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett. 1997;410(2–3):356–60.CrossRefPubMed Eto M, Senba S, Morita F, Yazawa M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett. 1997;410(2–3):356–60.CrossRefPubMed
59.
go back to reference Adelstein RS, Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–56.CrossRefPubMed Adelstein RS, Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–56.CrossRefPubMed
60.
go back to reference Ng YK, de Groat WC, Wu HY. Muscarinic regulation of neonatal rat bladder spontaneous contractions. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1049–1059.PubMedCentralCrossRefPubMed Ng YK, de Groat WC, Wu HY. Muscarinic regulation of neonatal rat bladder spontaneous contractions. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1049–1059.PubMedCentralCrossRefPubMed
61.
go back to reference Hristov KL, Parajuli SP, Soder RP, Cheng Q, Rovner ES, Petkov GV. Suppression of human detrusor smooth muscle excitability and contractility via pharmacological activation of large conductance Ca2 + −activated K+ channels. Am J Physiol Cell Physiol. 2012;302(11):C1632–1641.PubMedCentralCrossRefPubMed Hristov KL, Parajuli SP, Soder RP, Cheng Q, Rovner ES, Petkov GV. Suppression of human detrusor smooth muscle excitability and contractility via pharmacological activation of large conductance Ca2 + −activated K+ channels. Am J Physiol Cell Physiol. 2012;302(11):C1632–1641.PubMedCentralCrossRefPubMed
62.
go back to reference Brading AF. Ion channels and control of contractile activity in urinary bladder smooth muscle. Jpn J Pharmacol. 1992;58 Suppl 2:120P–7P.PubMed Brading AF. Ion channels and control of contractile activity in urinary bladder smooth muscle. Jpn J Pharmacol. 1992;58 Suppl 2:120P–7P.PubMed
63.
go back to reference Rivera L, Brading AF. The role of Ca2+ influx and intracellular Ca2+ release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle. BJU Int. 2006;98(4):868–75.CrossRefPubMed Rivera L, Brading AF. The role of Ca2+ influx and intracellular Ca2+ release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle. BJU Int. 2006;98(4):868–75.CrossRefPubMed
64.
go back to reference Klockner U, Isenberg G. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch. 1985;405(4):329–39.CrossRefPubMed Klockner U, Isenberg G. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch. 1985;405(4):329–39.CrossRefPubMed
65.
go back to reference Nakamura Y, Ishiura Y, Yokoyama O, Namiki M, De Groat WC. Role of protein kinase C in central muscarinic inhibitory mechanisms regulating voiding in rats. Neuroscience. 2003;116(2):477–84.CrossRefPubMed Nakamura Y, Ishiura Y, Yokoyama O, Namiki M, De Groat WC. Role of protein kinase C in central muscarinic inhibitory mechanisms regulating voiding in rats. Neuroscience. 2003;116(2):477–84.CrossRefPubMed
66.
go back to reference Hristov KL, Chen M, Kellett WF, Rovner ES, Petkov GV. Large-conductance voltage- and Ca2 + −activated K+ channels regulate human detrusor smooth muscle function. Am J Physiol Cell Physiol. 2011;301(4):C903–912.PubMedCentralCrossRefPubMed Hristov KL, Chen M, Kellett WF, Rovner ES, Petkov GV. Large-conductance voltage- and Ca2 + −activated K+ channels regulate human detrusor smooth muscle function. Am J Physiol Cell Physiol. 2011;301(4):C903–912.PubMedCentralCrossRefPubMed
67.
go back to reference Nobe K, Fujii A, Saito K, Negoro T, Ogawa Y, Nakano Y, et al. Adiponectin enhances calcium dependency of mouse bladder contraction mediated by protein kinase Calpha expression. J Pharmacol Exp Ther. 2013;345(1):62–8.CrossRefPubMed Nobe K, Fujii A, Saito K, Negoro T, Ogawa Y, Nakano Y, et al. Adiponectin enhances calcium dependency of mouse bladder contraction mediated by protein kinase Calpha expression. J Pharmacol Exp Ther. 2013;345(1):62–8.CrossRefPubMed
68.
go back to reference Takahashi R, Nishimura J, Hirano K, Seki N, Naito S, Kanaide H. Ca2+ sensitization in contraction of human bladder smooth muscle. J Urol. 2004;172(2):748–52.CrossRefPubMed Takahashi R, Nishimura J, Hirano K, Seki N, Naito S, Kanaide H. Ca2+ sensitization in contraction of human bladder smooth muscle. J Urol. 2004;172(2):748–52.CrossRefPubMed
69.
go back to reference Yoshimura Y, Yamaguchi O. Calcium independent contraction of bladder smooth muscle. Int J Urol. 1997;4(1):62–7.CrossRefPubMed Yoshimura Y, Yamaguchi O. Calcium independent contraction of bladder smooth muscle. Int J Urol. 1997;4(1):62–7.CrossRefPubMed
70.
go back to reference Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, et al. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol. 2014;307(6):C542–553.PubMedCentralCrossRefPubMed Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, et al. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol. 2014;307(6):C542–553.PubMedCentralCrossRefPubMed
72.
go back to reference Downing JE, Role LW. Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc Natl Acad Sci U S A. 1987;84(21):7739–43.PubMedCentralCrossRefPubMed Downing JE, Role LW. Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc Natl Acad Sci U S A. 1987;84(21):7739–43.PubMedCentralCrossRefPubMed
73.
go back to reference Sculptoreanu A, de Groat WC, Buffington CA, Birder LA. Protein kinase C contributes to abnormal capsaicin responses in DRG neurons from cats with feline interstitial cystitis. Neurosci Lett. 2005;381(1–2):42–6.PubMedCentralCrossRefPubMed Sculptoreanu A, de Groat WC, Buffington CA, Birder LA. Protein kinase C contributes to abnormal capsaicin responses in DRG neurons from cats with feline interstitial cystitis. Neurosci Lett. 2005;381(1–2):42–6.PubMedCentralCrossRefPubMed
74.
go back to reference Zhou Y, Zhou ZS, Zhao ZQ. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats. Neuropharmacology. 2001;41(5):601–8.CrossRefPubMed Zhou Y, Zhou ZS, Zhao ZQ. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats. Neuropharmacology. 2001;41(5):601–8.CrossRefPubMed
75.
go back to reference Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca-activated K channels in freshly isolated human detrusor smooth muscle cells. Pflugers Archiv. 2015;467(4):665-75. doi:10.1007/s00424-014-1537-8. Epub 2014 May 28. Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca-activated K channels in freshly isolated human detrusor smooth muscle cells. Pflugers Archiv. 2015;467(4):665-75. doi:10.​1007/​s00424-014-1537-8. Epub 2014 May 28.
76.
go back to reference Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca2 + − activated K+ channels in freshly isolated human detrusor smooth muscle cells. Pflugers Arch. 2015;467(4):665–75.CrossRefPubMed Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca2 + − activated K+ channels in freshly isolated human detrusor smooth muscle cells. Pflugers Arch. 2015;467(4):665–75.CrossRefPubMed
77.
go back to reference Levin RM, Haugaard N, Hypolite JA, Wein AJ, Buttyan R. Metabolic factors influencing lower urinary tract function. Exp Physiol. 1999;84(1):171–94.CrossRefPubMed Levin RM, Haugaard N, Hypolite JA, Wein AJ, Buttyan R. Metabolic factors influencing lower urinary tract function. Exp Physiol. 1999;84(1):171–94.CrossRefPubMed
78.
go back to reference Levin RM, Monson FC, Haugaard N, Buttyan R, Hudson A, Roelofs M, et al. Genetic and cellular characteristics of bladder outlet obstruction. Urol Clin North Am. 1995;22(2):263–83.PubMed Levin RM, Monson FC, Haugaard N, Buttyan R, Hudson A, Roelofs M, et al. Genetic and cellular characteristics of bladder outlet obstruction. Urol Clin North Am. 1995;22(2):263–83.PubMed
79.
go back to reference Shahab N, Kajioka S, Takahashi-Yanaga F, Onimaru M, Matsuda M, Seki N, et al. Obstruction enhances rho-kinase pathway and diminishes protein kinase C pathway in carbachol-induced calcium sensitization in contraction of alpha-toxin permeabilized guinea pig detrusor smooth muscle. Neurourol Urodyn. 2012;31(4):593–9.CrossRefPubMed Shahab N, Kajioka S, Takahashi-Yanaga F, Onimaru M, Matsuda M, Seki N, et al. Obstruction enhances rho-kinase pathway and diminishes protein kinase C pathway in carbachol-induced calcium sensitization in contraction of alpha-toxin permeabilized guinea pig detrusor smooth muscle. Neurourol Urodyn. 2012;31(4):593–9.CrossRefPubMed
80.
go back to reference Zhang EY, Stein R, Chang S, Zheng Y, Zderic SA, Wein AJ, et al. Smooth muscle hypertrophy following partial bladder outlet obstruction is associated with overexpression of non-muscle caldesmon. Am J Pathol. 2004;164(2):601–12.PubMedCentralCrossRefPubMed Zhang EY, Stein R, Chang S, Zheng Y, Zderic SA, Wein AJ, et al. Smooth muscle hypertrophy following partial bladder outlet obstruction is associated with overexpression of non-muscle caldesmon. Am J Pathol. 2004;164(2):601–12.PubMedCentralCrossRefPubMed
81.
go back to reference Choi BH, Jin LH, Kim KH, Kang SA, Kang JH, Yoon SM, et al. Cystometric parameters and the activity of signaling proteins in association with the compensation or decompensation of bladder function in an animal experimental model of partial bladder outlet obstruction. Int J Mol Med. 2013;32(6):1435–41.PubMed Choi BH, Jin LH, Kim KH, Kang SA, Kang JH, Yoon SM, et al. Cystometric parameters and the activity of signaling proteins in association with the compensation or decompensation of bladder function in an animal experimental model of partial bladder outlet obstruction. Int J Mol Med. 2013;32(6):1435–41.PubMed
82.
go back to reference Levin RM, Longhurst PA, Monson FC, Kato K, Wein AJ. Effect of bladder outlet obstruction on the morphology, physiology, and pharmacology of the bladder. Prostate Suppl. 1990;3:9–26.CrossRefPubMed Levin RM, Longhurst PA, Monson FC, Kato K, Wein AJ. Effect of bladder outlet obstruction on the morphology, physiology, and pharmacology of the bladder. Prostate Suppl. 1990;3:9–26.CrossRefPubMed
83.
go back to reference Stein R, Gong C, Hutcheson JC, Canning DA, Zderic SA. The decompensated detrusor III: impact of bladder outlet obstruction on sarcoplasmic endoplasmic reticulum protein and gene expression. J Urol. 2000;164(3 Pt 2):1026–30.CrossRefPubMed Stein R, Gong C, Hutcheson JC, Canning DA, Zderic SA. The decompensated detrusor III: impact of bladder outlet obstruction on sarcoplasmic endoplasmic reticulum protein and gene expression. J Urol. 2000;164(3 Pt 2):1026–30.CrossRefPubMed
84.
go back to reference DiSanto ME, Stein R, Chang S, Hypolite JA, Zheng Y, Zderic S, et al. Alteration in expression of myosin isoforms in detrusor smooth muscle following bladder outlet obstruction. Am J Physiol Cell Physiol. 2003;285(6):C1397–1410.CrossRefPubMed DiSanto ME, Stein R, Chang S, Hypolite JA, Zheng Y, Zderic S, et al. Alteration in expression of myosin isoforms in detrusor smooth muscle following bladder outlet obstruction. Am J Physiol Cell Physiol. 2003;285(6):C1397–1410.CrossRefPubMed
85.
go back to reference Macarak EJ, Schulz J, Zderic SA, Sado Y, Ninomiya Y, Polyak E, et al. Smooth muscle trans-membrane sarcoglycan complex in partial bladder outlet obstruction. Histochem Cell Biol. 2006;126(1):71–82.CrossRefPubMed Macarak EJ, Schulz J, Zderic SA, Sado Y, Ninomiya Y, Polyak E, et al. Smooth muscle trans-membrane sarcoglycan complex in partial bladder outlet obstruction. Histochem Cell Biol. 2006;126(1):71–82.CrossRefPubMed
86.
go back to reference Sjuve R, Haase H, Ekblad E, Malmqvist U, Morano I, Arner A. Increased expression of non-muscle myosin heavy chain-B in connective tissue cells of hypertrophic rat urinary bladder. Cell Tissue Res. 2001;304(2):271–8.CrossRefPubMed Sjuve R, Haase H, Ekblad E, Malmqvist U, Morano I, Arner A. Increased expression of non-muscle myosin heavy chain-B in connective tissue cells of hypertrophic rat urinary bladder. Cell Tissue Res. 2001;304(2):271–8.CrossRefPubMed
87.
go back to reference Iguchi N, Hou A, Koul HK, Wilcox DT. Partial bladder outlet obstruction in mice may cause E-cadherin repression through hypoxia induced pathway. J Urol. 2014;192(3):964–72.CrossRefPubMed Iguchi N, Hou A, Koul HK, Wilcox DT. Partial bladder outlet obstruction in mice may cause E-cadherin repression through hypoxia induced pathway. J Urol. 2014;192(3):964–72.CrossRefPubMed
88.
go back to reference Chacko S, Chang S, Hypolite J, Disanto M, Wein A. Alteration of contractile and regulatory proteins following partial bladder outlet obstruction. Scand J Urol Nephrol Suppl. 2004;215:26–36.CrossRefPubMed Chacko S, Chang S, Hypolite J, Disanto M, Wein A. Alteration of contractile and regulatory proteins following partial bladder outlet obstruction. Scand J Urol Nephrol Suppl. 2004;215:26–36.CrossRefPubMed
89.
go back to reference Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, et al. Detrusor overactivity is associated with downregulation of large-conductance calcium- and voltage-activated potassium channel protein. Am J Physiol Renal Physiol. 2010;298(6):F1416–1423.PubMedCentralCrossRefPubMed Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, et al. Detrusor overactivity is associated with downregulation of large-conductance calcium- and voltage-activated potassium channel protein. Am J Physiol Renal Physiol. 2010;298(6):F1416–1423.PubMedCentralCrossRefPubMed
90.
go back to reference Malykhina A, Hanno P. How are we going to make progress treating bladder pain syndrome? ICI-RS 2013. Neurourol Urodyn. 2014;33(5):625–9.CrossRefPubMed Malykhina A, Hanno P. How are we going to make progress treating bladder pain syndrome? ICI-RS 2013. Neurourol Urodyn. 2014;33(5):625–9.CrossRefPubMed
91.
go back to reference Sadler KE, Stratton JM, Kolber BJ. Urinary bladder distention evoked visceromotor responses as a model for bladder pain in mice. J Vis Exp. 2014:(86). Sadler KE, Stratton JM, Kolber BJ. Urinary bladder distention evoked visceromotor responses as a model for bladder pain in mice. J Vis Exp. 2014:(86).
Metadata
Title
Regulation of urinary bladder function by protein kinase C in physiology and pathophysiology
Authors
Joseph A. Hypolite
Anna P. Malykhina
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2015
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-015-0106-6

Other articles of this Issue 1/2015

BMC Urology 1/2015 Go to the issue