Skip to main content
Top
Published in: Anatomical Science International 3/2009

01-09-2009 | Special Issue on Cardiovascular Development

Regulation of endothelial cell differentiation and arterial specification by VEGF and Notch signaling

Author: Masanori Hirashima

Published in: Anatomical Science International | Issue 3/2009

Login to get access

Abstract

Analysis of molecular and cellular mechanisms underlying vascular development in vertebrates indicates that initially vasculogenesis occurs when a primary capillary plexus forms de novo from endothelial cell precursors derived from nascent mesodermal cells. Transplantation experiments in avian embryos demonstrate that embryonic endothelial cells originate from two different mesodermal lineages: splanchnic mesoderm and somites. Genetic analysis of mouse and zebrafish reveals that vascular endothelial growth factor (VEGF)/Flk1 and Notch signaling play crucial roles throughout embryonic vascular development. VEGFA plays a major role in endothelial cell proliferation, migration, survival, and regulation of vascular permeability. Flk1, the primary VEGFA receptor, is the earliest marker of the developing endothelial lineage and is essential for endothelial differentiation during vasculogenesis. Notch signaling has been demonstrated to directly induce arterial endothelial differentiation. Recent studies suggest that Notch signaling is activated downstream of VEGF signaling and negatively regulates VEGF-induced angiogenesis and suppresses aberrant vascular branching morphogenesis. In addition to altering endothelial cell fate through Notch activation, VEGFA directly guides endothelial cell migration in an isoform-dependent manner, modifying vascular patterns. Interestingly, genetic studies in mice show that many molecules involved in VEGF or Notch signaling must be tightly regulated for proper vascular formation. Taken together, VEGF and Notch signaling apparently coordinate vascular patterning by regulating each other.
Literature
go back to reference Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478PubMedCrossRef Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478PubMedCrossRef
go back to reference Ambler CA, Nowicki JL, Burke AC, Bautch VL (2001) Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev Biol 234:352–364PubMedCrossRef Ambler CA, Nowicki JL, Burke AC, Bautch VL (2001) Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev Biol 234:352–364PubMedCrossRef
go back to reference Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedCrossRef Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedCrossRef
go back to reference Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583PubMedCrossRef Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583PubMedCrossRef
go back to reference Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732PubMed Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732PubMed
go back to reference Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA 103:6554–6559PubMedCrossRef Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA 103:6554–6559PubMedCrossRef
go back to reference Duarte A, Hirashima M, Benedito R et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18:2474–2478PubMedCrossRef Duarte A, Hirashima M, Benedito R et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18:2474–2478PubMedCrossRef
go back to reference Dumont DJ, Jussila L, Taipale J et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949PubMedCrossRef Dumont DJ, Jussila L, Taipale J et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949PubMedCrossRef
go back to reference Ferrara N, Carver Moore K, Chen H et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedCrossRef Ferrara N, Carver Moore K, Chen H et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedCrossRef
go back to reference Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRef Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRef
go back to reference Gale NW, Dominguez MG, Noguera I et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101:15949–15954PubMedCrossRef Gale NW, Dominguez MG, Noguera I et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101:15949–15954PubMedCrossRef
go back to reference Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedCrossRef Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedCrossRef
go back to reference Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780PubMedCrossRef Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780PubMedCrossRef
go back to reference Hidaka M, Stanford WL, Bernstein A (1999) Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA 96:7370–7375PubMedCrossRef Hidaka M, Stanford WL, Bernstein A (1999) Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA 96:7370–7375PubMedCrossRef
go back to reference Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354PubMedCrossRef Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354PubMedCrossRef
go back to reference Krebs LT, Xue Y, Norton CR et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352PubMed Krebs LT, Xue Y, Norton CR et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352PubMed
go back to reference Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18:2469–2473PubMedCrossRef Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18:2469–2473PubMedCrossRef
go back to reference Lawson ND, Scheer N, Pham VN et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMed Lawson ND, Scheer N, Pham VN et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMed
go back to reference Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136PubMedCrossRef Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136PubMedCrossRef
go back to reference Lawson ND, Mugford JW, Diamond BA, Weinstein BM (2003) Phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 17:1346–1351PubMedCrossRef Lawson ND, Mugford JW, Diamond BA, Weinstein BM (2003) Phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 17:1346–1351PubMedCrossRef
go back to reference Le Douarin NM (1974) Cell recognition based on natural morphological nuclear markers. Med Biol 52:281–319PubMed Le Douarin NM (1974) Cell recognition based on natural morphological nuclear markers. Med Biol 52:281–319PubMed
go back to reference Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691PubMedCrossRef Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691PubMedCrossRef
go back to reference Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedCrossRef Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedCrossRef
go back to reference Limbourg A, Ploom M, Elligsen D et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371PubMedCrossRef Limbourg A, Ploom M, Elligsen D et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371PubMedCrossRef
go back to reference Liu ZJ, Shirakawa T, Li Y et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23:14–25PubMedCrossRef Liu ZJ, Shirakawa T, Li Y et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23:14–25PubMedCrossRef
go back to reference Matsumura K, Hirashima M, Ogawa M et al (2003) Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/VEGFR-3. Blood 101:1367–1374PubMedCrossRef Matsumura K, Hirashima M, Ogawa M et al (2003) Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/VEGFR-3. Blood 101:1367–1374PubMedCrossRef
go back to reference Millauer B, Wizigmann-Voos S, Schnurch H et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846PubMedCrossRef Millauer B, Wizigmann-Voos S, Schnurch H et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846PubMedCrossRef
go back to reference Miquerol L, Langille BL, Nagy A (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127:3941–3946PubMed Miquerol L, Langille BL, Nagy A (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127:3941–3946PubMed
go back to reference Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705PubMedCrossRef Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705PubMedCrossRef
go back to reference Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ (2005) Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132:941–952PubMedCrossRef Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ (2005) Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132:941–952PubMedCrossRef
go back to reference Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112–121PubMedCrossRef Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112–121PubMedCrossRef
go back to reference Nimmagadda S, Geetha-Loganathan P, Scaal M, Christ B, Huang R (2007) FGFs, Wnts and BMPs mediate induction of VEGFR-2 (Quek-1) expression during avian somite development. Dev Biol 305:421–429PubMedCrossRef Nimmagadda S, Geetha-Loganathan P, Scaal M, Christ B, Huang R (2007) FGFs, Wnts and BMPs mediate induction of VEGFR-2 (Quek-1) expression during avian somite development. Dev Biol 305:421–429PubMedCrossRef
go back to reference Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757PubMed Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757PubMed
go back to reference Noguera-Troise I, Daly C, Papadopoulos NJ et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037PubMedCrossRef Noguera-Troise I, Daly C, Papadopoulos NJ et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037PubMedCrossRef
go back to reference Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483PubMedCrossRef Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483PubMedCrossRef
go back to reference Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349PubMed Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349PubMed
go back to reference Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122:1363–1371PubMed Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lievre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122:1363–1371PubMed
go back to reference Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326PubMed Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326PubMed
go back to reference Peault BM, Thiery JP, Le Douarin NM (1983) Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA 80:2976–2980PubMedCrossRef Peault BM, Thiery JP, Le Douarin NM (1983) Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA 80:2976–2980PubMedCrossRef
go back to reference Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133:1013–1022PubMedCrossRef Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133:1013–1022PubMedCrossRef
go back to reference Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087PubMedCrossRef Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087PubMedCrossRef
go back to reference Rossant J, Hirashima M (2003) Vascular development and patterning: making the right choices. Curr Opin Genet Dev 13:408–412PubMedCrossRef Rossant J, Hirashima M (2003) Vascular development and patterning: making the right choices. Curr Opin Genet Dev 13:408–412PubMedCrossRef
go back to reference Ruhrberg C (2003) Growing and shaping the vascular tree: multiple roles for VEGF. Bioessays 25:1052–1060PubMedCrossRef Ruhrberg C (2003) Growing and shaping the vascular tree: multiple roles for VEGF. Bioessays 25:1052–1060PubMedCrossRef
go back to reference Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698PubMedCrossRef Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698PubMedCrossRef
go back to reference Sabin FR (1920) Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contrib Embryol 9:213–262 Sabin FR (1920) Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contrib Embryol 9:213–262
go back to reference Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci USA 102:1076–1081PubMedCrossRef Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci USA 102:1076–1081PubMedCrossRef
go back to reference Schuh AC, Faloon P, Hu QL, Bhimani M, Choi K (1999) In vitro hematopoietic and endothelial potential of flk-1(−/−) embryonic stem cells and embryos. Proc Natl Acad Sci USA 96:2159–2164PubMedCrossRef Schuh AC, Faloon P, Hu QL, Bhimani M, Choi K (1999) In vitro hematopoietic and endothelial potential of flk-1(−/−) embryonic stem cells and embryos. Proc Natl Acad Sci USA 96:2159–2164PubMedCrossRef
go back to reference Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T (2006) The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 294:458–470PubMedCrossRef Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T (2006) The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 294:458–470PubMedCrossRef
go back to reference Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedCrossRef Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedCrossRef
go back to reference Shalaby F, Ho J, Stanford WL et al (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990PubMedCrossRef Shalaby F, Ho J, Stanford WL et al (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990PubMedCrossRef
go back to reference Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784PubMedCrossRef Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784PubMedCrossRef
go back to reference Takashima S, Kitakaze M, Asakura M et al (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 99:3657–3662PubMedCrossRef Takashima S, Kitakaze M, Asakura M et al (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 99:3657–3662PubMedCrossRef
go back to reference Tammela T, Zarkada G, Wallgard E et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660PubMedCrossRef Tammela T, Zarkada G, Wallgard E et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660PubMedCrossRef
go back to reference Torres-Vazquez J, Kamei M, Weinstein BM (2003) Molecular distinction between arteries and veins. Cell Tissue Res 314:43–59PubMedCrossRef Torres-Vazquez J, Kamei M, Weinstein BM (2003) Molecular distinction between arteries and veins. Cell Tissue Res 314:43–59PubMedCrossRef
go back to reference Ueno H, Weissman IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11:519–533PubMedCrossRef Ueno H, Weissman IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11:519–533PubMedCrossRef
go back to reference Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 98:5643–5648PubMedCrossRef Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 98:5643–5648PubMedCrossRef
go back to reference Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA 99:8219–8224PubMedCrossRef Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA 99:8219–8224PubMedCrossRef
go back to reference Vogeli KM, Jin SW, Martin GR, Stainier DY (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339PubMedCrossRef Vogeli KM, Jin SW, Martin GR, Stainier DY (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339PubMedCrossRef
go back to reference Williams CK, Li JL, Murga M, Harris AL, Tosato G (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107:931–939PubMedCrossRef Williams CK, Li JL, Murga M, Harris AL, Tosato G (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107:931–939PubMedCrossRef
go back to reference Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498PubMed Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498PubMed
Metadata
Title
Regulation of endothelial cell differentiation and arterial specification by VEGF and Notch signaling
Author
Masanori Hirashima
Publication date
01-09-2009
Publisher
Springer Japan
Published in
Anatomical Science International / Issue 3/2009
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-009-0026-1

Other articles of this Issue 3/2009

Anatomical Science International 3/2009 Go to the issue

Special Issue on Cardiovascular Development

Zebrafish as a new animal model to study lymphangiogenesis