Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2013

01-02-2013 | Original Article

Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer

Authors: Jens Sörensen, Rikard Owenius, Michelle Lax, Silvia Johansson

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2013

Login to get access

Abstract

Purpose

[18F]Fluciclovine (anti-[18F]FACBC) is a synthetic amino acid developed for PET assessment of the anabolic component of tumour metabolism in clinical routine. This phase 1 trial evaluated the safety, tracer stability and uptake kinetics of [18F]fluciclovine in patients.

Methods

Six patients with biopsy-proven prostate cancer were investigated with 3-T MRI and PET/CT. All underwent dynamic [18F]fluciclovine PET/CT of the pelvic area for up to 120 min after injection of 418 ± 10 MBq of tracer with simultaneous blood sampling of radioactivity. The kinetics of uptake in tumours and normal tissues were evaluated using standardized uptake values (SUVs) and compartmental modelling.

Results

Tumour deposits as defined by MRI were clearly visualized by PET. Urine excretion was minimal and normal tissue background was low. Uptake of [18F]fluciclovine in tumour from the blood was rapid and the tumour-to-normal tissue contrast was highest between 1 and 15 min after injection with a 65 % reduction in mean tumour uptake at 90 min after injection. A one-compartment model fitted the tracer kinetics well. Early SUVs correlated well with both the influx rate constant (K 1) and the volume of distribution of the tracer (V T). There were no signs of tracer metabolite formation. The product was well tolerated in all patients without significant adverse events.

Conclusion

[18F]Fluciclovine shows high uptake in prostate cancer deposits and appears safe for use in humans. The production is robust and the formulation stable in vivo. An early imaging window seems to provide the best visual results. SUV measurements capture most of the kinetic information that can be obtained from more advanced models, potentially simplifying quantification in future studies.
Literature
1.
go back to reference National Cancer Institute. Surveillance Epidemiology and End Results Program. Cancer of the Prostate Statistics. 2010. National Cancer Institute. Surveillance Epidemiology and End Results Program. Cancer of the Prostate Statistics. 2010.
2.
go back to reference Black RJ, Bray F, Ferlay J, Parkin DM. Cancer incidence and mortality in the European Union: cancer registry data and estimates of national incidence for 1990. Eur J Cancer. 1997;33:1075–107.PubMedCrossRef Black RJ, Bray F, Ferlay J, Parkin DM. Cancer incidence and mortality in the European Union: cancer registry data and estimates of national incidence for 1990. Eur J Cancer. 1997;33:1075–107.PubMedCrossRef
3.
go back to reference Engelbrecht MR, Barentsz JO, Jager GJ, van der Graaf M, Heerschap A, Sedelaar JP, et al. Prostate cancer staging using imaging. BJU Int. 2000;86 Suppl 1:123–34.PubMed Engelbrecht MR, Barentsz JO, Jager GJ, van der Graaf M, Heerschap A, Sedelaar JP, et al. Prostate cancer staging using imaging. BJU Int. 2000;86 Suppl 1:123–34.PubMed
4.
go back to reference Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031–41.PubMedCrossRef Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031–41.PubMedCrossRef
6.
go back to reference Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33. doi:10.1148/radiol.09090413.PubMedCrossRef Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33. doi:10.​1148/​radiol.​09090413.PubMedCrossRef
7.
go back to reference Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol. 2011;59:51–60. doi:10.1016/j.eururo.2010.09.004.PubMedCrossRef Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol. 2011;59:51–60. doi:10.​1016/​j.​eururo.​2010.​09.​004.PubMedCrossRef
8.
go back to reference Sandblom G, Sörensen J, Lundin N, Häggman M, Malmström P-U. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67:996–1000.PubMedCrossRef Sandblom G, Sörensen J, Lundin N, Häggman M, Malmström P-U. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67:996–1000.PubMedCrossRef
9.
go back to reference Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24:2513–9. doi:10.1200/JCO.2005.03.5279.PubMedCrossRef Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24:2513–9. doi:10.​1200/​JCO.​2005.​03.​5279.PubMedCrossRef
10.
go back to reference Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMed Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMed
11.
go back to reference Seppälä J, Seppänen M, Arponen E, Lindholm P, Minn H. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol. 2009;93:234–40.PubMedCrossRef Seppälä J, Seppänen M, Arponen E, Lindholm P, Minn H. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol. 2009;93:234–40.PubMedCrossRef
12.
go back to reference Jani AB, Fox TH, Whitaker D, Schuster DM. Case study of anti-1-amino-3-F-18 fluorocyclobutane-1-carboxylic acid (anti-[F-18] FACBC) to guide prostate cancer radiotherapy target design. Clin Nucl Med. 2009;34:279–84.PubMedCrossRef Jani AB, Fox TH, Whitaker D, Schuster DM. Case study of anti-1-amino-3-F-18 fluorocyclobutane-1-carboxylic acid (anti-[F-18] FACBC) to guide prostate cancer radiotherapy target design. Clin Nucl Med. 2009;34:279–84.PubMedCrossRef
13.
14.
go back to reference Pinkawa M, Holy R, Piroth MD, Klotz J, Nussen S, Krohn T, et al. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol. 2010;186:600–6. doi:10.1007/s00066-010-2122-5.PubMedCrossRef Pinkawa M, Holy R, Piroth MD, Klotz J, Nussen S, Krohn T, et al. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol. 2010;186:600–6. doi:10.​1007/​s00066-010-2122-5.PubMedCrossRef
15.
go back to reference Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9. doi:10.1158/1078-0432.CCR-10-1357.PubMedCrossRef Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9. doi:10.​1158/​1078-0432.​CCR-10-1357.PubMedCrossRef
16.
go back to reference Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.PubMed Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.PubMed
17.
go back to reference Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.PubMedCrossRef Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.PubMedCrossRef
18.
20.
go back to reference McParland BJ, Lax M, Axelsson J, Wall A, Johansson S, Sorensen J. The biodistribution and internal radiation dosimetry of [18F]GE-148 in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2010;37 (Suppl 2):S287 McParland BJ, Lax M, Axelsson J, Wall A, Johansson S, Sorensen J. The biodistribution and internal radiation dosimetry of [18F]GE-148 in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2010;37 (Suppl 2):S287
21.
go back to reference McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58:657–66.PubMedCrossRef McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58:657–66.PubMedCrossRef
22.
go back to reference Kessler RM, Ellis Jr JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.PubMedCrossRef Kessler RM, Ellis Jr JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.PubMedCrossRef
23.
go back to reference Carson R. Mathematical modeling and compartmental analysis. In: Harbert J, Eckelman WC, Neumann R, editors. Nuclear medicine: diagnosis and therapy. New York: Thieme Medical Publishers; 1996. p. 167–94. Carson R. Mathematical modeling and compartmental analysis. In: Harbert J, Eckelman WC, Neumann R, editors. Nuclear medicine: diagnosis and therapy. New York: Thieme Medical Publishers; 1996. p. 167–94.
24.
go back to reference Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med. 1989;30:1069–78.PubMed Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med. 1989;30:1069–78.PubMed
27.
go back to reference Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3:6–12.PubMedCrossRef Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3:6–12.PubMedCrossRef
28.
29.
go back to reference Hoang JK, Hoagland LF, Coleman RE, Coan AD, Herndon JE, Patz EF. Prognostic value of fluorine-18 fluorodeoxyglucose positron emission tomography imaging in patients with advanced-stage non-small-cell lung carcinoma. J Clin Oncol. 2008;26:1459–64. doi:10.1200/jco.2007.14.3628.PubMedCrossRef Hoang JK, Hoagland LF, Coleman RE, Coan AD, Herndon JE, Patz EF. Prognostic value of fluorine-18 fluorodeoxyglucose positron emission tomography imaging in patients with advanced-stage non-small-cell lung carcinoma. J Clin Oncol. 2008;26:1459–64. doi:10.​1200/​jco.​2007.​14.​3628.PubMedCrossRef
Metadata
Title
Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer
Authors
Jens Sörensen
Rikard Owenius
Michelle Lax
Silvia Johansson
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2013
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-012-2291-9

Other articles of this Issue 3/2013

European Journal of Nuclear Medicine and Molecular Imaging 3/2013 Go to the issue