Skip to main content
Top
Published in: Annals of General Psychiatry 1/2016

Open Access 01-12-2016 | Primary research

Regional cortical thinning of the orbitofrontal cortex in medication-naïve female patients with major depressive disorder is not associated with MAOA-uVNTR polymorphism

Authors: Eunsoo Won, Sunyoung Choi, June Kang, Min-Soo Lee, Byung-Joo Ham

Published in: Annals of General Psychiatry | Issue 1/2016

Login to get access

Abstract

Background

Orbitofrontal cortex alterations have been suggested to underlie the impaired mood regulation in depression. MAOA-uVNTR (monoamine oxidase A-upstream variable number of tandem repeats) polymorphism has been reported to be associated with major depressive disorder by various studies. The influence of MAOA-uVNTR genotype on function and structure of the orbitofrontal cortex has previously been reported. In this study, we investigated the difference in orbitofrontal cortex thickness between medication-naïve female patients with major depressive disorder and healthy controls, and the influence of MAOA-uVNTR genotype on orbitofrontal cortex thickness in depression.

Methods

Thirty-one patients with major depressive disorder and 43 healthy controls were included. All participants were subjected to T1-weighted structural magnetic resonance imaging and genotyped for MAOA-uVNTR polymorphism. An automated procedure of FreeSurfer was used to analyze difference in orbitofrontal cortex thickness.

Results

Patients showed a significantly thinner left orbitofrontal cortex (F (1,71) = 7.941, p = 0.006) and right orbitofrontal cortex (F (1,71) = 17.447, p < 0.001). For the orbitofrontal cortex sub-region analysis, patients showed a significantly thinner left medial orbitofrontal cortex (F (1,71) = 8.117, p = 0.006), right medial orbitofrontal cortex (F (1,71) = 21.795, p < 0.001) and right lateral orbitofrontal cortex (F (1,71) = 9.932, p = 0.002) compared to healthy controls. No significant interaction of diagnosis and MAOA-uVNTR genotype on orbitofrontal cortex thickness was revealed.

Conclusions

Our results suggest that structural alterations of the orbitofrontal cortex may be associated with the pathophysiology of major depressive disorder. Future studies with larger sample sizes are needed to detect a possible association between MAOA-uVNTR genotype and orbitofrontal cortex thickness in depression.
Literature
1.
go back to reference Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord. 2008;10:1–37.CrossRefPubMed Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord. 2008;10:1–37.CrossRefPubMed
2.
go back to reference Lacerda AL, Keshavan MS, Hardan AY, Yorbik O, Brambilla P, Sassi RB, et al. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatr. 2004;55:353–8.CrossRef Lacerda AL, Keshavan MS, Hardan AY, Yorbik O, Brambilla P, Sassi RB, et al. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatr. 2004;55:353–8.CrossRef
3.
go back to reference Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatr. 2002;51:273–9.CrossRef Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatr. 2002;51:273–9.CrossRef
4.
go back to reference Vasic N, Walter H, Hose A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord. 2008;109:107–16.CrossRefPubMed Vasic N, Walter H, Hose A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord. 2008;109:107–16.CrossRefPubMed
5.
go back to reference Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1995;363:615–41.CrossRefPubMed Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1995;363:615–41.CrossRefPubMed
6.
go back to reference Tu PC, Chen LF, Hsieh JC, Bai YM, Li CT, Su TP. Regional cortical thinning in patients with major depressive disorder: a surface-based morphometry study. Psychiatr Res. 2012;202:206–13.CrossRef Tu PC, Chen LF, Hsieh JC, Bai YM, Li CT, Su TP. Regional cortical thinning in patients with major depressive disorder: a surface-based morphometry study. Psychiatr Res. 2012;202:206–13.CrossRef
7.
go back to reference Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013;3:332–9.CrossRefPubMedPubMedCentral Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013;3:332–9.CrossRefPubMedPubMedCentral
8.
go back to reference Meyer-Lindenberg A. Intermediate or brainless phenotypes for psychiatric research? Psychol Med. 2010;40:1057–62.CrossRefPubMed Meyer-Lindenberg A. Intermediate or brainless phenotypes for psychiatric research? Psychol Med. 2010;40:1057–62.CrossRefPubMed
9.
go back to reference Melas PA, Wei Y, Wong CC, Sjoholm LK, Aberg E, Mill J, et al. Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. Int J Neuropsychopharmacol. 2013;16:1513–28.CrossRefPubMed Melas PA, Wei Y, Wong CC, Sjoholm LK, Aberg E, Mill J, et al. Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. Int J Neuropsychopharmacol. 2013;16:1513–28.CrossRefPubMed
10.
go back to reference Zhang J, Chen Y, Zhang K, Yang H, Sun Y, Fang Y, et al. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol Psychiatr. 2010;68:795–800.CrossRef Zhang J, Chen Y, Zhang K, Yang H, Sun Y, Fang Y, et al. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol Psychiatr. 2010;68:795–800.CrossRef
11.
go back to reference Williams LM, Gatt JM, Kuan SA, Dobson-Stone C, Palmer DM, Paul RH, et al. A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology. 2009;34:1797–809.CrossRefPubMed Williams LM, Gatt JM, Kuan SA, Dobson-Stone C, Palmer DM, Paul RH, et al. A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology. 2009;34:1797–809.CrossRefPubMed
12.
go back to reference Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology. 2005;30:1719–23.CrossRefPubMed Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology. 2005;30:1719–23.CrossRefPubMed
13.
go back to reference Huang SY, Lin MT, Lin WW, Huang CC, Shy MJ, Lu RB. Association of monoamine oxidase A (MAOA) polymorphisms and clinical subgroups of major depressive disorders in the Han Chinese population. World J Biol Psychiatr. 2009;10:544–51.CrossRef Huang SY, Lin MT, Lin WW, Huang CC, Shy MJ, Lu RB. Association of monoamine oxidase A (MAOA) polymorphisms and clinical subgroups of major depressive disorders in the Han Chinese population. World J Biol Psychiatr. 2009;10:544–51.CrossRef
14.
go back to reference Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr. 2016;64:311–9.CrossRef Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr. 2016;64:311–9.CrossRef
16.
go back to reference Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA. 2006;103:6269–74.CrossRefPubMedPubMedCentral Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA. 2006;103:6269–74.CrossRefPubMedPubMedCentral
17.
go back to reference Cerasa A, Gioia MC, Labate A, Lanza P, Magariello A, Muglia M, et al. MAO A VNTR polymorphism and variation in human morphology: a VBM study. Neuroreport. 2008;19:1107–10.CrossRefPubMed Cerasa A, Gioia MC, Labate A, Lanza P, Magariello A, Muglia M, et al. MAO A VNTR polymorphism and variation in human morphology: a VBM study. Neuroreport. 2008;19:1107–10.CrossRefPubMed
18.
go back to reference Cerasa A, Cherubini A, Quattrone A, Gioia MC, Magariello A, Muglia M, et al. Morphological correlates of MAO A VNTR polymorphism: new evidence from cortical thickness measurement. Behav Brain Res. 2010;211:118–24.CrossRefPubMed Cerasa A, Cherubini A, Quattrone A, Gioia MC, Magariello A, Muglia M, et al. Morphological correlates of MAO A VNTR polymorphism: new evidence from cortical thickness measurement. Behav Brain Res. 2010;211:118–24.CrossRefPubMed
19.
go back to reference Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21:187–221.CrossRefPubMed Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21:187–221.CrossRefPubMed
20.
go back to reference Scott ML, Bromiley PA, Thacker NA, Hutchinson CE, Jackson A. A fast, model-independent method for cerebral cortical thickness estimation using MRI. Med Image Anal. 2009;13:269–85.CrossRefPubMed Scott ML, Bromiley PA, Thacker NA, Hutchinson CE, Jackson A. A fast, model-independent method for cerebral cortical thickness estimation using MRI. Med Image Anal. 2009;13:269–85.CrossRefPubMed
21.
go back to reference Wagner G, Schultz CC, Koch K, Schachtzabel C, Sauer H, Schlosser RG. Prefrontal cortical thickness in depressed patients with high-risk for suicidal behavior. J Psychiatr Res. 2012;46:1449–55.CrossRefPubMed Wagner G, Schultz CC, Koch K, Schachtzabel C, Sauer H, Schlosser RG. Prefrontal cortical thickness in depressed patients with high-risk for suicidal behavior. J Psychiatr Res. 2012;46:1449–55.CrossRefPubMed
22.
go back to reference Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–46.CrossRefPubMed Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–46.CrossRefPubMed
23.
go back to reference Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32:180–94.CrossRefPubMed Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32:180–94.CrossRefPubMed
24.
go back to reference Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatr. 2006;59:1116–27.CrossRef Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatr. 2006;59:1116–27.CrossRef
25.
go back to reference Reif A, Weber H, Domschke K, Klauke B, Baumann C, Jacob CP, et al. Meta-analysis argues for a female-specific role of MAOA-uVNTR in panic disorder in four European populations. Am J Med Genet Part B. 2012;159B:786–93.CrossRefPubMed Reif A, Weber H, Domschke K, Klauke B, Baumann C, Jacob CP, et al. Meta-analysis argues for a female-specific role of MAOA-uVNTR in panic disorder in four European populations. Am J Med Genet Part B. 2012;159B:786–93.CrossRefPubMed
26.
go back to reference Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22.CrossRefPubMed Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22.CrossRefPubMed
27.
28.
go back to reference Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.CrossRefPubMed Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.CrossRefPubMed
29.
go back to reference Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26:518–29.CrossRefPubMed Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26:518–29.CrossRefPubMed
30.
go back to reference Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.CrossRefPubMed Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.CrossRefPubMed
31.
go back to reference Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M, et al. Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatr. 2002;7:626–32.CrossRef Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M, et al. Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatr. 2002;7:626–32.CrossRef
32.
go back to reference van Eijndhoven P, van Wingen G, Katzenbauer M, Groen W, Tepest R, Fernandez G, et al. Paralimbic cortical thickness in first-episode depression: evidence for trait-related differences in mood regulation. Am J Psychiatr. 2013;170:1477–86.CrossRefPubMed van Eijndhoven P, van Wingen G, Katzenbauer M, Groen W, Tepest R, Fernandez G, et al. Paralimbic cortical thickness in first-episode depression: evidence for trait-related differences in mood regulation. Am J Psychiatr. 2013;170:1477–86.CrossRefPubMed
33.
go back to reference Price JL. Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci. 1999;877:383–96.CrossRefPubMed Price JL. Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci. 1999;877:383–96.CrossRefPubMed
34.
go back to reference Morecraft RJ, Geula C, Mesulam MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol. 1992;323:341–58.CrossRefPubMed Morecraft RJ, Geula C, Mesulam MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol. 1992;323:341–58.CrossRefPubMed
35.
go back to reference Northoff G, Richter A, Gessner M, Schlagenhauf F, Fell J, Baumgart F, et al. Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cereb Cortex. 2000;10:93–107.CrossRefPubMed Northoff G, Richter A, Gessner M, Schlagenhauf F, Fell J, Baumgart F, et al. Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cereb Cortex. 2000;10:93–107.CrossRefPubMed
36.
go back to reference Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology. 1996;46:1231–8.CrossRefPubMed Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology. 1996;46:1231–8.CrossRefPubMed
37.
go back to reference Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatr. 1999;45:1085–98.CrossRef Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatr. 1999;45:1085–98.CrossRef
38.
go back to reference Pardoe HR, Abbott DF, Jackson GD. Sample size estimates for well-powered cross-sectional cortical thickness studies. Hum Brain Mapp. 2013;34:3000–9.CrossRefPubMed Pardoe HR, Abbott DF, Jackson GD. Sample size estimates for well-powered cross-sectional cortical thickness studies. Hum Brain Mapp. 2013;34:3000–9.CrossRefPubMed
39.
go back to reference Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD. Gender-linked brain injury in experimental stroke. Stroke. 1998;29:159–65.CrossRefPubMed Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD. Gender-linked brain injury in experimental stroke. Stroke. 1998;29:159–65.CrossRefPubMed
40.
go back to reference Carrel L, Cottle AA, Goglin KC, Willard HF. A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA. 1999;96:14440–4.CrossRefPubMedPubMedCentral Carrel L, Cottle AA, Goglin KC, Willard HF. A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA. 1999;96:14440–4.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang DF, Li J, Wu H, Cui Y, Bi R, Zhou HJ, et al. CFH variants affect structural and functional brain changes and genetic risk of alzheimer’s disease. Neuropsychopharmacology. 2016;41:1034–45.CrossRefPubMed Zhang DF, Li J, Wu H, Cui Y, Bi R, Zhou HJ, et al. CFH variants affect structural and functional brain changes and genetic risk of alzheimer’s disease. Neuropsychopharmacology. 2016;41:1034–45.CrossRefPubMed
Metadata
Title
Regional cortical thinning of the orbitofrontal cortex in medication-naïve female patients with major depressive disorder is not associated with MAOA-uVNTR polymorphism
Authors
Eunsoo Won
Sunyoung Choi
June Kang
Min-Soo Lee
Byung-Joo Ham
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Annals of General Psychiatry / Issue 1/2016
Electronic ISSN: 1744-859X
DOI
https://doi.org/10.1186/s12991-016-0116-0

Other articles of this Issue 1/2016

Annals of General Psychiatry 1/2016 Go to the issue