Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2013

Open Access 01-12-2013 | Review

Regenerative medicine for the kidney: stem cell prospects & challenges

Authors: Yue Li, Rebecca A Wingert

Published in: Clinical and Translational Medicine | Issue 1/2013

Login to get access

Abstract

The kidney has key roles in maintaining human health. There is an escalating medical crisis in nephrology as growing numbers of patients suffer from kidney diseases that culminate in organ failure. While dialysis and transplantation provide life-saving treatments, these therapies are rife with limitations and place significant burdens on patients and healthcare systems. It has become imperative to find alternative ways to treat existing kidney conditions and preemptive means to stave off renal dysfunction. The creation of innovative medical approaches that utilize stem cells has received growing research attention. In this review, we discuss the regenerative and maladaptive cellular responses that occur during acute and chronic kidney disease, the emerging evidence about renal stem cells, and some of the issues that lie ahead in bridging the gap between basic stem cell biology and regenerative medicine for the kidney.
Appendix
Available only for authorised users
Literature
3.
6.
go back to reference Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK: Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 2010, 298: F178-F1094.CrossRef Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK: Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 2010, 298: F178-F1094.CrossRef
7.
go back to reference El Nahas AM, Bello AK: Chronic kidney disease: the global challenge. Lancet 2005, 365: 331–340.CrossRef El Nahas AM, Bello AK: Chronic kidney disease: the global challenge. Lancet 2005, 365: 331–340.CrossRef
8.
go back to reference Stocum DL: Stem cells in regenerative biology and medicine. Wound Rep Reg 2001, 9: 429–442.CrossRef Stocum DL: Stem cells in regenerative biology and medicine. Wound Rep Reg 2001, 9: 429–442.CrossRef
9.
go back to reference Fioretto P, Steffes MW, Sutherland DER, Goetz FC, Mauer M: Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998, 339: 69–75.PubMedCrossRef Fioretto P, Steffes MW, Sutherland DER, Goetz FC, Mauer M: Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998, 339: 69–75.PubMedCrossRef
10.
go back to reference Fioretto P, Sutherland DER, Najafian B, Mauer M: Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006, 69: 907–910.PubMedCrossRef Fioretto P, Sutherland DER, Najafian B, Mauer M: Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006, 69: 907–910.PubMedCrossRef
11.
go back to reference Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000, 100: 157–168.PubMedCrossRef Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000, 100: 157–168.PubMedCrossRef
13.
go back to reference Hsu YC, Fuchs E: A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Bio 2012, 13: 103–114.CrossRef Hsu YC, Fuchs E: A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Bio 2012, 13: 103–114.CrossRef
14.
go back to reference Burness ML, Sipkins DA: The stem cell niche in health and malignancy. Semin Cancer Biol 2010, 20: 107–115.PubMedCrossRef Burness ML, Sipkins DA: The stem cell niche in health and malignancy. Semin Cancer Biol 2010, 20: 107–115.PubMedCrossRef
15.
go back to reference Sharpless NE, DePinho RA: How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 2007, 8: 703–713.PubMedCrossRef Sharpless NE, DePinho RA: How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 2007, 8: 703–713.PubMedCrossRef
17.
go back to reference Reilly RF, Bulger RE, Kriz W, In Diseases of the Kidney and Urinary Tract, Eighth Edition: Structural-functional relationships in the kidney. Philadelphia: Lippincott Williams & Wilkins: Edited by Schrier RW; 2007:2–53. Reilly RF, Bulger RE, Kriz W, In Diseases of the Kidney and Urinary Tract, Eighth Edition: Structural-functional relationships in the kidney. Philadelphia: Lippincott Williams & Wilkins: Edited by Schrier RW; 2007:2–53.
18.
go back to reference Little MH, Brennan J, Georgas K, Davies JA, Davidson DR, Baldock RA: A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns 2007, 7: 680–699.PubMedCentralPubMedCrossRef Little MH, Brennan J, Georgas K, Davies JA, Davidson DR, Baldock RA: A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns 2007, 7: 680–699.PubMedCentralPubMedCrossRef
19.
go back to reference Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J: Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 2008, 15: 781–791.PubMedCentralPubMedCrossRef Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J: Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 2008, 15: 781–791.PubMedCentralPubMedCrossRef
20.
go back to reference Mugford JW, Yu J, Kobayashi A, McMahon AP: High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 2009, 333: 312–323.PubMedCentralPubMedCrossRef Mugford JW, Yu J, Kobayashi A, McMahon AP: High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 2009, 333: 312–323.PubMedCentralPubMedCrossRef
21.
go back to reference Yu J, Valerius MT, Duah M, Staser K, Hansard JK, Guo JJ: Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development 2012, 139: 1863–1873.PubMedCentralPubMedCrossRef Yu J, Valerius MT, Duah M, Staser K, Hansard JK, Guo JJ: Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development 2012, 139: 1863–1873.PubMedCentralPubMedCrossRef
22.
go back to reference Wingert RA, Davidson AJ: The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 2008, 73: 1120–1127.PubMedCrossRef Wingert RA, Davidson AJ: The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 2008, 73: 1120–1127.PubMedCrossRef
23.
go back to reference Nyengaard JR, Bendtsen TF: Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 1992, 232: 194–201.PubMedCrossRef Nyengaard JR, Bendtsen TF: Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 1992, 232: 194–201.PubMedCrossRef
24.
go back to reference Hughson M, Farris III: AB, Douglas-Denton R, Yoy WE, Bertram JF: Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 2003, 63: 2113–2122.PubMedCrossRef Hughson M, Farris III: AB, Douglas-Denton R, Yoy WE, Bertram JF: Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 2003, 63: 2113–2122.PubMedCrossRef
25.
go back to reference Potter EL, Thierstein ST: Glomerular development in the kidney as an index of fetal maturity. J Pediatr 1943, 22: 695–706.CrossRef Potter EL, Thierstein ST: Glomerular development in the kidney as an index of fetal maturity. J Pediatr 1943, 22: 695–706.CrossRef
26.
go back to reference Hartman HA, Lai HL, Patterson LT: Cessation of renal morphogenesis in mice. Dev Biol 2007, 301: 379–387.CrossRef Hartman HA, Lai HL, Patterson LT: Cessation of renal morphogenesis in mice. Dev Biol 2007, 301: 379–387.CrossRef
27.
go back to reference Solomon S: Developmental changes in nephron number, proximal tubule length and superficial nephron glomerular filtration rate of rats. J Physiol 1977, 272: 573–589.PubMedCentralPubMedCrossRef Solomon S: Developmental changes in nephron number, proximal tubule length and superficial nephron glomerular filtration rate of rats. J Physiol 1977, 272: 573–589.PubMedCentralPubMedCrossRef
28.
go back to reference Wesson LG: Compensatory growth and other growth responses of the kidney. Nephron 1989, 51: 149–184.PubMedCrossRef Wesson LG: Compensatory growth and other growth responses of the kidney. Nephron 1989, 51: 149–184.PubMedCrossRef
29.
go back to reference de Rouffignac C, Monnens L: Functional and morphologic maturation of superficial and juxtamedullary nephrons in the rat. J Physiol 1976, 262: 119–129.PubMedCentralPubMedCrossRef de Rouffignac C, Monnens L: Functional and morphologic maturation of superficial and juxtamedullary nephrons in the rat. J Physiol 1976, 262: 119–129.PubMedCentralPubMedCrossRef
31.
go back to reference Blanpain C, Fuchs E: Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Bio 2009, 10: 207–217.CrossRef Blanpain C, Fuchs E: Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Bio 2009, 10: 207–217.CrossRef
32.
go back to reference van der Flier LG, Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009, 71: 241–260.PubMedCrossRef van der Flier LG, Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009, 71: 241–260.PubMedCrossRef
33.
go back to reference Prescott LF: The normal urinary excretion rates of renal tubular cells, leucocytes and red blood cells. Clin Sci 1966, 31: 425–435.PubMed Prescott LF: The normal urinary excretion rates of renal tubular cells, leucocytes and red blood cells. Clin Sci 1966, 31: 425–435.PubMed
34.
go back to reference Dörrenhaus A, Müller JIF, Golka K, Jedrusik P, Schulze H, Föllmann W: Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system. Arch Toxicol 2000, 74: 618–626.PubMedCrossRef Dörrenhaus A, Müller JIF, Golka K, Jedrusik P, Schulze H, Föllmann W: Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system. Arch Toxicol 2000, 74: 618–626.PubMedCrossRef
35.
go back to reference Vogelmann SU, Nelson WJ, Myers BD, Lemley KV: Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 2003, 285: F40-F48.PubMedCentralPubMedCrossRef Vogelmann SU, Nelson WJ, Myers BD, Lemley KV: Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 2003, 285: F40-F48.PubMedCentralPubMedCrossRef
36.
go back to reference Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J: Glucose transporters in human renal proximal tubular cells isolated from the urine in patients with non-insulin-dependent diabetes. Diabetes 2005, 54: 3427–3434.PubMedCrossRef Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J: Glucose transporters in human renal proximal tubular cells isolated from the urine in patients with non-insulin-dependent diabetes. Diabetes 2005, 54: 3427–3434.PubMedCrossRef
37.
go back to reference Messier B, Leblond CP: Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Amer J Anat 1960, 106: 247–285.PubMedCrossRef Messier B, Leblond CP: Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Amer J Anat 1960, 106: 247–285.PubMedCrossRef
38.
go back to reference Maeshima A, Yamashita S, Nojima Y: Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 2003, 14: 3138–3146.PubMedCrossRef Maeshima A, Yamashita S, Nojima Y: Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 2003, 14: 3138–3146.PubMedCrossRef
39.
go back to reference Maeshima A, Sakurai H, Nigam SK: Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol 2006, 17: 188–198.PubMedCrossRef Maeshima A, Sakurai H, Nigam SK: Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol 2006, 17: 188–198.PubMedCrossRef
40.
go back to reference Vogetseder A, Karadeniz A, Kaissling B, Le Hir M: Tubular cell proliferation in the healthy rat kidney. Histochem Cell Biol 2005, 124: 97–104.PubMedCrossRef Vogetseder A, Karadeniz A, Kaissling B, Le Hir M: Tubular cell proliferation in the healthy rat kidney. Histochem Cell Biol 2005, 124: 97–104.PubMedCrossRef
41.
go back to reference Vogetseder A, Palan T, Bacic D, Kaissling B, Le Hir M: Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney. Am J Physiol Cell Physiol 2007, 292: C807-C813.PubMedCrossRef Vogetseder A, Palan T, Bacic D, Kaissling B, Le Hir M: Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney. Am J Physiol Cell Physiol 2007, 292: C807-C813.PubMedCrossRef
42.
go back to reference Vogetseder A, Picard N, Gaspert A, Walch M, Kaissling B, Le Hir M: Proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. Am J Physiol Cell Physiol 2008, 294: C22-C28.PubMedCrossRef Vogetseder A, Picard N, Gaspert A, Walch M, Kaissling B, Le Hir M: Proliferation capacity of the renal proximal tubule involves the bulk of differentiated epithelial cells. Am J Physiol Cell Physiol 2008, 294: C22-C28.PubMedCrossRef
43.
go back to reference Nadasdy T, Laszik Z, Blick KE, Johnson LD, Silva FG: Proliferative activity of intrinsic cell populations in the normal human kidney. J Am Soc Nephrol 1994, 4: 2032–2039.PubMed Nadasdy T, Laszik Z, Blick KE, Johnson LD, Silva FG: Proliferative activity of intrinsic cell populations in the normal human kidney. J Am Soc Nephrol 1994, 4: 2032–2039.PubMed
45.
go back to reference Hostetter TH: Progression of renal disease and renal hypertrophy. Annu Rev Physiol 1995, 57: 263–278.PubMedCrossRef Hostetter TH: Progression of renal disease and renal hypertrophy. Annu Rev Physiol 1995, 57: 263–278.PubMedCrossRef
46.
47.
go back to reference Houghton DC, Hartnett M, Campbell-Boswell M, Porter G, Bennett W: A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. Am J Pathol 1976, 82: 589–612.PubMedCentralPubMed Houghton DC, Hartnett M, Campbell-Boswell M, Porter G, Bennett W: A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. Am J Pathol 1976, 82: 589–612.PubMedCentralPubMed
48.
go back to reference Witzgall R, Brown D, Schwarz C, Bonventre JV: Localization of proliferating cell nuclear antigen, vimentin, c-Fos and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 1994, 93: 2175–2188.PubMedCentralPubMedCrossRef Witzgall R, Brown D, Schwarz C, Bonventre JV: Localization of proliferating cell nuclear antigen, vimentin, c-Fos and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 1994, 93: 2175–2188.PubMedCentralPubMedCrossRef
49.
go back to reference Nadasdy T, Laszik Z, Blick KE, Johnson DL, Burst-Singer K, Nast C: Human acute tubular necrosis: a lectin and immunohistochemical study. Hum Pathol 1995, 26: 230–239.PubMedCrossRef Nadasdy T, Laszik Z, Blick KE, Johnson DL, Burst-Singer K, Nast C: Human acute tubular necrosis: a lectin and immunohistochemical study. Hum Pathol 1995, 26: 230–239.PubMedCrossRef
50.
go back to reference Molitoris BA, Wilson PD, Schrier RW, Simon FR: Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores. J Clin Invest 1985, 76: 2097–2105.PubMedCentralPubMedCrossRef Molitoris BA, Wilson PD, Schrier RW, Simon FR: Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores. J Clin Invest 1985, 76: 2097–2105.PubMedCentralPubMedCrossRef
51.
go back to reference Molitoris BA, Hoilien CA, Ahnen DJ, Wilson PD, Kim J: Characterization of ischemia-induced loss of epithelial polarity. J Membr Biol 1988, 106: 233–242.PubMedCrossRef Molitoris BA, Hoilien CA, Ahnen DJ, Wilson PD, Kim J: Characterization of ischemia-induced loss of epithelial polarity. J Membr Biol 1988, 106: 233–242.PubMedCrossRef
52.
go back to reference Zuk A, Bonventre JV, Brown D, Matlin KS: Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol 1998, 273: C711-C731. Zuk A, Bonventre JV, Brown D, Matlin KS: Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol 1998, 273: C711-C731.
53.
go back to reference Imgrund M, Gröne E, Gröne HJ, Kretzler M, Holzman L, Schlöndorff D: Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice. Kidney Int 1999, 56: 1423–1431.PubMedCrossRef Imgrund M, Gröne E, Gröne HJ, Kretzler M, Holzman L, Schlöndorff D: Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice. Kidney Int 1999, 56: 1423–1431.PubMedCrossRef
54.
go back to reference Abbate M, Brown D, Bonventre JV: Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia. Am J Physiol 1999, 277: F454-F463.PubMed Abbate M, Brown D, Bonventre JV: Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia. Am J Physiol 1999, 277: F454-F463.PubMed
55.
go back to reference Villanueva S, Cespedes C, Vio CP: Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am J Physiol Regul Integr Comp Physiol 2006, 290: R861–870.PubMedCrossRef Villanueva S, Cespedes C, Vio CP: Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am J Physiol Regul Integr Comp Physiol 2006, 290: R861–870.PubMedCrossRef
56.
go back to reference Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ: Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 2003, 14: 1188–1199.PubMedCrossRef Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ: Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 2003, 14: 1188–1199.PubMedCrossRef
57.
go back to reference Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG: Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 2003, 112: 42–49.PubMedCentralPubMedCrossRef Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG: Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 2003, 112: 42–49.PubMedCentralPubMedCrossRef
58.
go back to reference Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T: Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005, 115: 1743–1755.PubMedCentralPubMedCrossRef Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T: Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005, 115: 1743–1755.PubMedCentralPubMedCrossRef
59.
go back to reference Lin F, Moran A, Igarashi P: Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in the postischemic kidney. J Clin Invest 2005, 115: 1756–1764.PubMedCentralPubMedCrossRef Lin F, Moran A, Igarashi P: Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in the postischemic kidney. J Clin Invest 2005, 115: 1756–1764.PubMedCentralPubMedCrossRef
60.
go back to reference Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS: Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008, 2: 284–291.PubMedCrossRef Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS: Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008, 2: 284–291.PubMedCrossRef
61.
go back to reference Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M: Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004, 15: 1794–1804.PubMedCrossRef Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M: Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004, 15: 1794–1804.PubMedCrossRef
62.
go back to reference Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G: Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 1994, 14: 1035–1041. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G: Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 1994, 14: 1035–1041.
63.
go back to reference Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005, 289: F31-F42.PubMedCrossRef Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005, 289: F31-F42.PubMedCrossRef
64.
go back to reference Lange C, Tögel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR: Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 2005, 68: 1613–1617.PubMedCrossRef Lange C, Tögel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR: Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 2005, 68: 1613–1617.PubMedCrossRef
65.
go back to reference Bi B, Schmitt E, Israilova M, Nishio H, Cantley LG: Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 2007, 18: 2486–2496.PubMedCrossRef Bi B, Schmitt E, Israilova M, Nishio H, Cantley LG: Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 2007, 18: 2486–2496.PubMedCrossRef
66.
go back to reference Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q: The renal papilla is a niche for adult kidney stem cells. J Clin Invest 2004, 114: 795–804.PubMedCentralPubMedCrossRef Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q: The renal papilla is a niche for adult kidney stem cells. J Clin Invest 2004, 114: 795–804.PubMedCentralPubMedCrossRef
67.
go back to reference Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV: Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci, USA 2011, 108: 9226–9231.PubMedCentralPubMedCrossRef Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV: Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci, USA 2011, 108: 9226–9231.PubMedCentralPubMedCrossRef
68.
go back to reference Langworthy M, Zhou B, de Caestecker M, Moeckel G, Baldwin HS: NFATc1 identifies a population of proximal tubule cell progenitors. J Am Soc Nephrol 2009, 20: 311–321.PubMedCentralPubMedCrossRef Langworthy M, Zhou B, de Caestecker M, Moeckel G, Baldwin HS: NFATc1 identifies a population of proximal tubule cell progenitors. J Am Soc Nephrol 2009, 20: 311–321.PubMedCentralPubMedCrossRef
69.
go back to reference Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D: Isolation of renal progenitor cells from adult human kidney. Am J Pathol 2005, 166: 545–555.PubMedCentralPubMedCrossRef Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D: Isolation of renal progenitor cells from adult human kidney. Am J Pathol 2005, 166: 545–555.PubMedCentralPubMedCrossRef
70.
go back to reference Sallustio F, De Benedictis L, Castellano G, Zaza G, Loverre A, Constantino V: TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J 2010, 24: 514–525.PubMedCrossRef Sallustio F, De Benedictis L, Castellano G, Zaza G, Loverre A, Constantino V: TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J 2010, 24: 514–525.PubMedCrossRef
71.
go back to reference Lindgren D, Boström AK, Nilsson K: Hansson, Sjölund J, Möller C, et al.: Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 2011, 178: 828–837.PubMedCentralPubMedCrossRef Lindgren D, Boström AK, Nilsson K: Hansson, Sjölund J, Möller C, et al.: Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 2011, 178: 828–837.PubMedCentralPubMedCrossRef
72.
go back to reference Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C: Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 2012, 30: 1714–1725.PubMedCrossRef Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C: Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 2012, 30: 1714–1725.PubMedCrossRef
73.
go back to reference Smeets B, Boor P, Jijkman H, Sharma SV, Jirak P, Mooren F: Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 2013, 229: 645–659.PubMedCentralPubMedCrossRef Smeets B, Boor P, Jijkman H, Sharma SV, Jirak P, Mooren F: Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 2013, 229: 645–659.PubMedCentralPubMedCrossRef
75.
go back to reference Hu B, Gadegbeku C, Lipkowitz MS, Rostand S, Lewis J, Wright JT: Kidney function can improve in patients with hypertensive CKD. J Am Soc Nephrol 2012, 23: 706–713.PubMedCentralPubMedCrossRef Hu B, Gadegbeku C, Lipkowitz MS, Rostand S, Lewis J, Wright JT: Kidney function can improve in patients with hypertensive CKD. J Am Soc Nephrol 2012, 23: 706–713.PubMedCentralPubMedCrossRef
76.
go back to reference Hirschberg R: Wound healing in the kidney: complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol 2005, 16: 9–11.PubMedCrossRef Hirschberg R: Wound healing in the kidney: complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol 2005, 16: 9–11.PubMedCrossRef
77.
go back to reference Yang J, Liu Y: Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 2001, 159: 1465–1475.PubMedCentralPubMedCrossRef Yang J, Liu Y: Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 2001, 159: 1465–1475.PubMedCentralPubMedCrossRef
78.
go back to reference Iwano M, Plieth D, Danoff TM, Xiu C, Okada H, Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002, 110: 341–350.PubMedCentralPubMedCrossRef Iwano M, Plieth D, Danoff TM, Xiu C, Okada H, Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002, 110: 341–350.PubMedCentralPubMedCrossRef
79.
go back to reference Yamashita S, Maeshima A, Nojima Y: Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneys. J Am Soc Nephrol 2005, 16: 2044–2051.PubMedCrossRef Yamashita S, Maeshima A, Nojima Y: Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneys. J Am Soc Nephrol 2005, 16: 2044–2051.PubMedCrossRef
80.
go back to reference Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 2008, 19: 2282–2287.PubMedCentralPubMedCrossRef Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 2008, 19: 2282–2287.PubMedCentralPubMedCrossRef
81.
go back to reference Li J, Qu X, Bertram JF: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 2009, 175: 1380–1388.PubMedCentralPubMedCrossRef Li J, Qu X, Bertram JF: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 2009, 175: 1380–1388.PubMedCentralPubMedCrossRef
82.
go back to reference Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010, 176: 85–97.PubMedCentralPubMedCrossRef Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010, 176: 85–97.PubMedCentralPubMedCrossRef
83.
go back to reference Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE: The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 2011, 79: 1361–1369.PubMedCentralPubMedCrossRef Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE: The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 2011, 79: 1361–1369.PubMedCentralPubMedCrossRef
84.
go back to reference Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T: Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 2012, 82: 172–183.PubMedCentralPubMedCrossRef Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T: Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 2012, 82: 172–183.PubMedCentralPubMedCrossRef
85.
go back to reference Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F: Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 2006, 17: 2443–2456.PubMedCrossRef Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F: Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 2006, 17: 2443–2456.PubMedCrossRef
86.
go back to reference Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS: Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 2007, 18: 3128–3138.PubMedCrossRef Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS: Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 2007, 18: 3128–3138.PubMedCrossRef
87.
go back to reference Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L: Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 2009, 20: 322–332.PubMedCentralPubMedCrossRef Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L: Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 2009, 20: 322–332.PubMedCentralPubMedCrossRef
88.
89.
go back to reference Petermann AT, Pippin J, Durvasula R, Pichler R, Hiromura K, Monkawa T: Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int 2005, 67: 157–166.PubMedCrossRef Petermann AT, Pippin J, Durvasula R, Pichler R, Hiromura K, Monkawa T: Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int 2005, 67: 157–166.PubMedCrossRef
90.
go back to reference Xu ZG, Yoo TH, Ryu DR, Park HC, Ha SK, Han DS: Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and diabetic glomeruli. Kidney Int 2005, 67: 944–952.PubMedCrossRef Xu ZG, Yoo TH, Ryu DR, Park HC, Ha SK, Han DS: Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and diabetic glomeruli. Kidney Int 2005, 67: 944–952.PubMedCrossRef
91.
go back to reference Osterby R, Gundersen HJ: Glomerular size and structure in diabetes mellitus. I. Early abnormalities. Diabetologia 1975, 11: 225–229.PubMedCrossRef Osterby R, Gundersen HJ: Glomerular size and structure in diabetes mellitus. I. Early abnormalities. Diabetologia 1975, 11: 225–229.PubMedCrossRef
92.
go back to reference Gundersen HJ, Osterby R: Glomerular size and structure in diabetes mellitus. II. Late abnormalities. Diabetologia 1977, 13: 43–38.PubMedCrossRef Gundersen HJ, Osterby R: Glomerular size and structure in diabetes mellitus. II. Late abnormalities. Diabetologia 1977, 13: 43–38.PubMedCrossRef
93.
go back to reference Pabst R, Sterzel RB: Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int 1983, 24: 626–631.PubMedCrossRef Pabst R, Sterzel RB: Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int 1983, 24: 626–631.PubMedCrossRef
94.
go back to reference Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B: Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 2009, 20: 333–343.PubMedCentralPubMedCrossRef Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B: Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 2009, 20: 333–343.PubMedCentralPubMedCrossRef
95.
go back to reference Bruno S, Bussolati B, Grange C, Collino F, de Cantogno LV, Herrera MB: Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev 2009, 18: 867–879.PubMedCrossRef Bruno S, Bussolati B, Grange C, Collino F, de Cantogno LV, Herrera MB: Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev 2009, 18: 867–879.PubMedCrossRef
96.
go back to reference Swetha G, Chandra V, Phadnis S, Bhonde R: Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J Cell Mol Med 2011, 15: 396–413.PubMedCrossRef Swetha G, Chandra V, Phadnis S, Bhonde R: Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J Cell Mol Med 2011, 15: 396–413.PubMedCrossRef
97.
go back to reference Smeets B, Angelotti ML, Rizzo P, Dijkman H, Lazzeri E, Mooren F: Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 2009, 20: 2593–2603.PubMedCentralPubMedCrossRef Smeets B, Angelotti ML, Rizzo P, Dijkman H, Lazzeri E, Mooren F: Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 2009, 20: 2593–2603.PubMedCentralPubMedCrossRef
98.
go back to reference Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JFM, Floege J: Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 2009, 20: 2604–2615.PubMedCentralPubMedCrossRef Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JFM, Floege J: Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 2009, 20: 2604–2615.PubMedCentralPubMedCrossRef
99.
go back to reference Smeets B, Moeller MJ: Parietal epithelial cells and podocytes in glomerular diseases. Semin Nephrol 2012, 32: 357–367.PubMedCrossRef Smeets B, Moeller MJ: Parietal epithelial cells and podocytes in glomerular diseases. Semin Nephrol 2012, 32: 357–367.PubMedCrossRef
100.
go back to reference Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B: Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010, 28: 1673–1685.CrossRef Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B: Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010, 28: 1673–1685.CrossRef
101.
go back to reference Ruggenenti P, Perna A, Gherardi G, Gaspari F, Benini R, Remuzzi G: Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Lancet 1998, 352: 1252–1256.PubMedCrossRef Ruggenenti P, Perna A, Gherardi G, Gaspari F, Benini R, Remuzzi G: Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Lancet 1998, 352: 1252–1256.PubMedCrossRef
102.
go back to reference Ruggenenti P, Perna A, Benini R, Bertani T, Zoccali C, Maggiore Q: In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. J Am Soc Nephrol 1999, 10: 997–1006.PubMed Ruggenenti P, Perna A, Benini R, Bertani T, Zoccali C, Maggiore Q: In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. J Am Soc Nephrol 1999, 10: 997–1006.PubMed
103.
go back to reference Wilmer WA, Hebert LA, Lewis EJ, Rohde RD, Whittier F, Cattran D: Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the captopril study. Am J Kidney Dis 1999, 34: 308–314.PubMedCrossRef Wilmer WA, Hebert LA, Lewis EJ, Rohde RD, Whittier F, Cattran D: Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the captopril study. Am J Kidney Dis 1999, 34: 308–314.PubMedCrossRef
104.
go back to reference Macconi D, Sangalli F, Bonomelli M, Conti S, Condorelli L, Gagliardini E: Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. Am J Pathol 2009, 174: 797–807.PubMedCentralPubMedCrossRef Macconi D, Sangalli F, Bonomelli M, Conti S, Condorelli L, Gagliardini E: Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. Am J Pathol 2009, 174: 797–807.PubMedCentralPubMedCrossRef
105.
go back to reference Benigni A, Morigi M, Rizzo P, Gagliardini E, Rota C, Abbate M: Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring glomerular architecture. Am J Pathol 2011, 179: 628–638.PubMedCentralPubMedCrossRef Benigni A, Morigi M, Rizzo P, Gagliardini E, Rota C, Abbate M: Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring glomerular architecture. Am J Pathol 2011, 179: 628–638.PubMedCentralPubMedCrossRef
106.
go back to reference Oliver JA, Lkinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP: Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 2009, 20: 2315–2327.PubMedCentralPubMedCrossRef Oliver JA, Lkinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP: Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 2009, 20: 2315–2327.PubMedCentralPubMedCrossRef
107.
go back to reference Adams DC, Oxburgh L: The long-term label retaining population of the renal papilla arises through divergent regional growth of the kidney. Am J Physiol Renal Physiol 2009, 297: F809-F815.PubMedCentralPubMedCrossRef Adams DC, Oxburgh L: The long-term label retaining population of the renal papilla arises through divergent regional growth of the kidney. Am J Physiol Renal Physiol 2009, 297: F809-F815.PubMedCentralPubMedCrossRef
108.
go back to reference Patschan D, Michurina T, Shi HK, Dolff S, Brodsky SV, Cohen-Gould L: Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia. Kidney Int 2007, 71: 744–754.PubMedCrossRef Patschan D, Michurina T, Shi HK, Dolff S, Brodsky SV, Cohen-Gould L: Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia. Kidney Int 2007, 71: 744–754.PubMedCrossRef
109.
go back to reference Ward HH, Romero E, Welford A, Pickett G, Bacallao R, Gattone VH II: Adult human CD133/1+ kidney cells isolated from renal papilla integrate into developing kidney tubules. Biochim Biophys Acta 1812, 2011: 1344–1357. Ward HH, Romero E, Welford A, Pickett G, Bacallao R, Gattone VH II: Adult human CD133/1+ kidney cells isolated from renal papilla integrate into developing kidney tubules. Biochim Biophys Acta 1812, 2011: 1344–1357.
110.
go back to reference Song J, Czerniak S, Wang T, Ying W, Carlone DL, Breault DT: Characterization and fate of telomerase-expressing epithelial during kidney repair. J Am Soc Nephrol 2011, 22: 2256–2265.PubMedCentralPubMedCrossRef Song J, Czerniak S, Wang T, Ying W, Carlone DL, Breault DT: Characterization and fate of telomerase-expressing epithelial during kidney repair. J Am Soc Nephrol 2011, 22: 2256–2265.PubMedCentralPubMedCrossRef
111.
go back to reference Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y: Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 2005, 19: 1789–1797.PubMedCrossRef Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y: Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 2005, 19: 1789–1797.PubMedCrossRef
112.
go back to reference Dekel B, Zangi L, Shezen E, Reich-Zeliger S, Eventov-Friedman S, Katchman H: Isolation and characterization of nontubular Sca-1+Lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 2006, 17: 3300–3314.PubMedCrossRef Dekel B, Zangi L, Shezen E, Reich-Zeliger S, Eventov-Friedman S, Katchman H: Isolation and characterization of nontubular Sca-1+Lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 2006, 17: 3300–3314.PubMedCrossRef
113.
go back to reference Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J: Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol 2006, 17: 3028–3040.PubMedCrossRef Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J: Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol 2006, 17: 3028–3040.PubMedCrossRef
114.
go back to reference Lee PT, Lin HH, Jiang ST, Lu PJ, Chou KJ, Fang HC: Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells 2010, 28: 573–584.PubMed Lee PT, Lin HH, Jiang ST, Lu PJ, Chou KJ, Fang HC: Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells 2010, 28: 573–584.PubMed
115.
116.
go back to reference Plotkin MD, Goligorski MS: Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Renal Physiol 2006, 291: F902-F912.CrossRef Plotkin MD, Goligorski MS: Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Renal Physiol 2006, 291: F902-F912.CrossRef
117.
go back to reference Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M: Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 2008, 74: 879–889.PubMedCentralPubMedCrossRef Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M: Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 2008, 74: 879–889.PubMedCentralPubMedCrossRef
118.
go back to reference Asakura A, Rudnicki MA: Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 2002, 30: 1339–1345.PubMedCrossRef Asakura A, Rudnicki MA: Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 2002, 30: 1339–1345.PubMedCrossRef
119.
go back to reference Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, Shibata K: Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 2005, 169: 921–928.PubMedCentralPubMedCrossRef Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, Shibata K: Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 2005, 169: 921–928.PubMedCentralPubMedCrossRef
120.
go back to reference Iwatani H, Ito T, Imai E, Matsuzaki Y, Suzuki A, Yamato M: Hematopoietic and nonhematopoietic potentials of Hoechstlow/side population cells isolated from adult rat kidney. Kidney Int 2004, 65: 1604–1614.PubMedCrossRef Iwatani H, Ito T, Imai E, Matsuzaki Y, Suzuki A, Yamato M: Hematopoietic and nonhematopoietic potentials of Hoechstlow/side population cells isolated from adult rat kidney. Kidney Int 2004, 65: 1604–1614.PubMedCrossRef
121.
go back to reference Challen GA, Bertoncello I, Deane JA, Ricardo SD, Little MH: Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J Am Soc Nephrol 2006, 17: 1896–1912.PubMedCrossRef Challen GA, Bertoncello I, Deane JA, Ricardo SD, Little MH: Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J Am Soc Nephrol 2006, 17: 1896–1912.PubMedCrossRef
122.
go back to reference Addla SK, Brown MD, Hart CA, Ramani VAC, Clarke NW: Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol 2008, 295: F680-F687.PubMedCentralPubMedCrossRef Addla SK, Brown MD, Hart CA, Ramani VAC, Clarke NW: Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol 2008, 295: F680-F687.PubMedCentralPubMedCrossRef
123.
go back to reference Inowa T, Hishikawa K, Takeuchi T, Kitamura T, Fujita T: Isolation and potential existence of side population cells in adult human kidney. Int J Urol 2008, 15: 272–275.PubMedCrossRef Inowa T, Hishikawa K, Takeuchi T, Kitamura T, Fujita T: Isolation and potential existence of side population cells in adult human kidney. Int J Urol 2008, 15: 272–275.PubMedCrossRef
124.
go back to reference Imai N, Hishikawa K, Marumo T, Hirahashi J, Inowa T, Matsuzaki Y: Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury. Stem Cells 2007, 25: 2469–2475.PubMedCrossRef Imai N, Hishikawa K, Marumo T, Hirahashi J, Inowa T, Matsuzaki Y: Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury. Stem Cells 2007, 25: 2469–2475.PubMedCrossRef
125.
go back to reference Deane JA, Ricardo SD: Emerging roles for primary cilia in epithelial repair. Int Rev Cell Mol Biol 2012, 293: 169–193.PubMedCrossRef Deane JA, Ricardo SD: Emerging roles for primary cilia in epithelial repair. Int Rev Cell Mol Biol 2012, 293: 169–193.PubMedCrossRef
126.
127.
go back to reference Saraga-Babic M, Vukojevic K, Bocina I, Drnasin K, Saraga M: Ciliogenesis in normal human kidney development and post-natal life. Pediatr Nephrol 2012, 27: 55–63.PubMedCrossRef Saraga-Babic M, Vukojevic K, Bocina I, Drnasin K, Saraga M: Ciliogenesis in normal human kidney development and post-natal life. Pediatr Nephrol 2012, 27: 55–63.PubMedCrossRef
128.
go back to reference Romagnani P, Lasagni L, Remuzzi G: Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 2013, 9: 137–146.PubMedCrossRef Romagnani P, Lasagni L, Remuzzi G: Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 2013, 9: 137–146.PubMedCrossRef
130.
go back to reference Zeisberg M, Kalluri R: Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol 2008, 23: 1395–1398.PubMedCrossRef Zeisberg M, Kalluri R: Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol 2008, 23: 1395–1398.PubMedCrossRef
131.
132.
go back to reference McCreight CE, Sulkin NM: Cellular proliferation in the kidneys of young and senile rats following unilateral nephrectomy. J Gerontol 1959, 14: 440–443.CrossRef McCreight CE, Sulkin NM: Cellular proliferation in the kidneys of young and senile rats following unilateral nephrectomy. J Gerontol 1959, 14: 440–443.CrossRef
133.
Metadata
Title
Regenerative medicine for the kidney: stem cell prospects & challenges
Authors
Yue Li
Rebecca A Wingert
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2013
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/2001-1326-2-11

Other articles of this Issue 1/2013

Clinical and Translational Medicine 1/2013 Go to the issue