Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Refracture | Research article

Risk factors for refracture after plate removal for midshaft clavicle fracture after bone union

Authors: Shang-Wen Tsai, Hsuan-Hsiao Ma, Fang-Wei Hsu, Te-Feng Arthur Chou, Kun-Hui Chen, Chao-Ching Chiang, Wei-Ming Chen

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Open reduction and internal fixation (ORIF) with plates and screws is one of the treatment options for clavicle fractures. However, an additional operation for implant removal after union of the fracture is commonly performed due to a high incidence of hardware irritation. Despite union of the fracture, a subsequent refracture might occur after removal of the implant which requires additional surgeries for fixation. This study aims to determine the risk factors associated with refracture of the clavicle after hardware removal.

Methods

We retrospectively reviewed the medical records of 278 patients that were diagnosed with a midshaft clavicle fracture (male 190; female 88) that had (1) undergone ORIF of the clavicle with plates and (2) received a second operation for removal of hardware after solid union of the fracture between 2010 and 2017. Their mean age was 40.1 ± 15.1 years, and mean interval from fixation to plate removal was 12.5 ± 7.5 months. The patients were then divided into two groups based on the presence of refracture (n = 20) or without refracture (n = 258). We analyzed patient demographics, interval between fixation and implant removal, fracture classification (AO/OTA, Robinson), fixation device, whether wires or interfragmentary screws were used, clavicular length, and bone diameter at the fracture site.

Results

The overall refracture rate was 7.2%, and the mean interval between plate removal and refracture was 23.9 days. A multivariate analysis showed that female (adjusted odds ratio [aOR] 4.74; 95% CI 1.6–14.1) and body mass index [BMI] (for every 1-unit decrease, aOR 1.25; 95% CI 1.06–1.48) were risk factors for refracture. In women, BMI was the only risk factor. The optimal BMI cutoff value was 22.73. In a female patient with a lower BMI, the refracture rate was 29.8%.

Conclusions

There are no significant radiographic parameters associated with refracture. Routine plate removal in a female patient with a low BMI after bony union of a midshaft clavicle fracture is not recommended because of a high refracture rate.
Literature
1.
go back to reference Kong L, Zhang Y, Shen Y. Operative versus nonoperative treatment for displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. Arch Orthop Trauma Surg. 2014;134:1493–500.CrossRef Kong L, Zhang Y, Shen Y. Operative versus nonoperative treatment for displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. Arch Orthop Trauma Surg. 2014;134:1493–500.CrossRef
2.
go back to reference Xu J, Xu L, Xu W, Gu Y, Xu J. Operative versus nonoperative treatment in the management of midshaft clavicular fractures: a meta-analysis of randomized controlled trials. J Shoulder Elb Surg. 2014;23:173–81.CrossRef Xu J, Xu L, Xu W, Gu Y, Xu J. Operative versus nonoperative treatment in the management of midshaft clavicular fractures: a meta-analysis of randomized controlled trials. J Shoulder Elb Surg. 2014;23:173–81.CrossRef
3.
go back to reference Tutuhatunewa ED, Stevens M, Diercks RL. Clinical outcomes and predictors of patient satisfaction in displaced midshaft clavicle fractures in adults: results from a retrospective multicentre study. Injury. 2017;48:2788–92.CrossRef Tutuhatunewa ED, Stevens M, Diercks RL. Clinical outcomes and predictors of patient satisfaction in displaced midshaft clavicle fractures in adults: results from a retrospective multicentre study. Injury. 2017;48:2788–92.CrossRef
4.
go back to reference Woltz S, Krijnen P, Schipper IB. Plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2017;99:1051–7.CrossRef Woltz S, Krijnen P, Schipper IB. Plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2017;99:1051–7.CrossRef
5.
go back to reference Ashman BD, Slobogean GP, Stone TB, Viskontas DG, Moola FO, et al. Reoperation following open reduction and plate fixation of displaced mid-shaft clavicle fractures. Injury. 2014;45:1549–53.CrossRef Ashman BD, Slobogean GP, Stone TB, Viskontas DG, Moola FO, et al. Reoperation following open reduction and plate fixation of displaced mid-shaft clavicle fractures. Injury. 2014;45:1549–53.CrossRef
6.
go back to reference Schemitsch LA, Schemitsch EH, Kuzyk P, McKee MD. Prognostic factors for reoperation after plate fixation of the midshaft clavicle. J Orthop Trauma. 2015;29:533–7.CrossRef Schemitsch LA, Schemitsch EH, Kuzyk P, McKee MD. Prognostic factors for reoperation after plate fixation of the midshaft clavicle. J Orthop Trauma. 2015;29:533–7.CrossRef
7.
go back to reference Leroux T, Wasserstein D, Henry P, Khoshbin A, Dwyer T, et al. Rate of and risk factors for reoperations after open reduction and internal fixation of midshaft clavicle fractures: a population-based study in Ontario, Canada. J Bone Joint Surg Am. 2014;96:1119–25.CrossRef Leroux T, Wasserstein D, Henry P, Khoshbin A, Dwyer T, et al. Rate of and risk factors for reoperations after open reduction and internal fixation of midshaft clavicle fractures: a population-based study in Ontario, Canada. J Bone Joint Surg Am. 2014;96:1119–25.CrossRef
8.
go back to reference Hulsmans MH, van Heijl M, Houwert RM, Hammacher ER, Meylaerts SA, et al. High irritation and removal rates after plate or nail fixation in patients with displaced midshaft clavicle fractures. Clin Orthop Relat Res. 2017;475:532–9.CrossRef Hulsmans MH, van Heijl M, Houwert RM, Hammacher ER, Meylaerts SA, et al. High irritation and removal rates after plate or nail fixation in patients with displaced midshaft clavicle fractures. Clin Orthop Relat Res. 2017;475:532–9.CrossRef
9.
go back to reference Bostman O, Manninen M, Pihlajamaki H. Complications of plate fixation in fresh displaced midclavicular fractures. J Trauma. 1997;43:778–83.CrossRef Bostman O, Manninen M, Pihlajamaki H. Complications of plate fixation in fresh displaced midclavicular fractures. J Trauma. 1997;43:778–83.CrossRef
10.
go back to reference Russo R, Visconti V, Lorini S, Lombardi LV. Displaced comminuted midshaft clavicle fractures: use of Mennen plate fixation system. J Trauma. 2007;63:951–4.CrossRef Russo R, Visconti V, Lorini S, Lombardi LV. Displaced comminuted midshaft clavicle fractures: use of Mennen plate fixation system. J Trauma. 2007;63:951–4.CrossRef
11.
go back to reference VanBeek C, Boselli KJ, Cadet ER, Ahmad CS, Levine WN. Precontoured plating of clavicle fractures: decreased hardware-related complications? Clin Orthop Relat Res. 2011;469:3337–43.CrossRef VanBeek C, Boselli KJ, Cadet ER, Ahmad CS, Levine WN. Precontoured plating of clavicle fractures: decreased hardware-related complications? Clin Orthop Relat Res. 2011;469:3337–43.CrossRef
12.
go back to reference Robinson CM, Goudie EB, Murray IR, Jenkins PJ, Ahktar MA, et al. Open reduction and plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: a multicenter, randomized, controlled trial. J Bone Joint Surg Am. 2013;95:1576–84.CrossRef Robinson CM, Goudie EB, Murray IR, Jenkins PJ, Ahktar MA, et al. Open reduction and plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: a multicenter, randomized, controlled trial. J Bone Joint Surg Am. 2013;95:1576–84.CrossRef
13.
go back to reference Shen WJ, Liu TJ, Shen YS. Plate fixation of fresh displaced midshaft clavicle fractures. Injury. 1999;30:497–500.CrossRef Shen WJ, Liu TJ, Shen YS. Plate fixation of fresh displaced midshaft clavicle fractures. Injury. 1999;30:497–500.CrossRef
14.
go back to reference Canadian Orthopaedic Trauma S. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. A multicenter, randomized clinical trial. J Bone Joint Surg Am. 2007;89:1–10.CrossRef Canadian Orthopaedic Trauma S. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. A multicenter, randomized clinical trial. J Bone Joint Surg Am. 2007;89:1–10.CrossRef
15.
go back to reference Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993;8:567–73.CrossRef Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993;8:567–73.CrossRef
16.
go back to reference Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med. 2016;374:2096–7.CrossRef Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med. 2016;374:2096–7.CrossRef
17.
go back to reference Deluca PA, Lindsey RW, Ruwe PA. Refracture of bones of the forearm after the removal of compression plates. J Bone Joint Surg Am. 1988;70:1372–6.CrossRef Deluca PA, Lindsey RW, Ruwe PA. Refracture of bones of the forearm after the removal of compression plates. J Bone Joint Surg Am. 1988;70:1372–6.CrossRef
18.
go back to reference Yao CK, Lin KC, Tarng YW, Chang WN, Renn JH. Removal of forearm plate leads to a high risk of refracture: decision regarding implant removal after fixation of the forearm and analysis of risk factors of refracture. Arch Orthop Trauma Surg. 2014;134:1691–7.CrossRef Yao CK, Lin KC, Tarng YW, Chang WN, Renn JH. Removal of forearm plate leads to a high risk of refracture: decision regarding implant removal after fixation of the forearm and analysis of risk factors of refracture. Arch Orthop Trauma Surg. 2014;134:1691–7.CrossRef
19.
go back to reference Rosson JW, Petley GW, Shearer JR. Bone structure after removal of internal fixation plates. J Bone Joint Surg Br. 1991;73:65–7.CrossRef Rosson JW, Petley GW, Shearer JR. Bone structure after removal of internal fixation plates. J Bone Joint Surg Br. 1991;73:65–7.CrossRef
20.
go back to reference Edgerton BC, An KN, Morrey BF. Torsional strength reduction due to cortical defects in bone. J Orthop Res. 1990;8:851–5.CrossRef Edgerton BC, An KN, Morrey BF. Torsional strength reduction due to cortical defects in bone. J Orthop Res. 1990;8:851–5.CrossRef
21.
go back to reference McBroom RJ, Cheal EJ, Hayes WC. Strength reductions from metastatic cortical defects in long bones. J Orthop Res. 1988;6:369–78.CrossRef McBroom RJ, Cheal EJ, Hayes WC. Strength reductions from metastatic cortical defects in long bones. J Orthop Res. 1988;6:369–78.CrossRef
22.
go back to reference Yang JC, Lin KJ, Wei HW, Tsai CL, Lin KP, et al. Morphometric analysis of the clavicles in Chinese population. Biomed Res Int. 2017;2017:8149109.PubMedPubMedCentral Yang JC, Lin KJ, Wei HW, Tsai CL, Lin KP, et al. Morphometric analysis of the clavicles in Chinese population. Biomed Res Int. 2017;2017:8149109.PubMedPubMedCentral
Metadata
Title
Risk factors for refracture after plate removal for midshaft clavicle fracture after bone union
Authors
Shang-Wen Tsai
Hsuan-Hsiao Ma
Fang-Wei Hsu
Te-Feng Arthur Chou
Kun-Hui Chen
Chao-Ching Chiang
Wei-Ming Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1516-z

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue