Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 5/2014

01-05-2014 | Original Article

Recombinant IL-21 and anti-CD4 antibodies cooperate in syngeneic neuroblastoma immunotherapy and mediate long-lasting immunity

Authors: Valentina Rigo, Maria Valeria Corrias, Anna Maria Orengo, Antonella Brizzolara, Laura Emionite, Daniela Fenoglio, Gilberto Filaci, Michela Croce, Silvano Ferrini

Published in: Cancer Immunology, Immunotherapy | Issue 5/2014

Login to get access

Abstract

IL-21 is an immune-enhancing cytokine, which showed promising results in cancer immunotherapy. We previously observed that the administration of anti-CD4 cell-depleting antibody strongly enhanced the anti-tumor effects of an IL-21-engineered neuroblastoma (NB) cell vaccine. Here, we studied the therapeutic effects of a combination of recombinant (r) IL-21 and anti-CD4 monoclonal antibodies (mAb) in a syngeneic model of disseminated NB. Subcutaneous rIL-21 therapy at 0.5 or 1 μg/dose (at days 2, 6, 9, 13 and 15 after NB induction) had a limited effect on NB development. However, coadministration of rIL-21 at the two dose levels and a cell-depleting anti-CD4 mAb cured 28 and 70 % of mice, respectively. Combined immunotherapy was also effective if started 7 days after NB implant, resulting in a 30 % cure rate. Anti-CD4 antibody treatment efficiently depleted CD4+ CD25high Treg cells, but alone had limited impact on NB. Combination immunotherapy by anti-CD4 mAb and rIL-21 induced a CD8+ cytotoxic T lymphocyte response, which resulted in tumor eradication and long-lasting immunity. CD4+ T cells, which re-populated mice after combination immunotherapy, were required for immunity to NB antigens as indicated by CD4+ T cell depletion and re-challenge experiments. In conclusion, these data support a role for regulatory CD4+ T cells in a syngeneic NB model and suggest that rIL-21 combined with CD4+ T cell depletion reprograms CD4+ T cells from immune regulatory to anti-tumor functions. These observations open new perspectives for the use of IL-21-based immunotherapy in conjunction with transient CD4+ T cell depletion, in human metastatic NB.
Appendix
Available only for authorised users
Literature
6.
go back to reference Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706–1715PubMed Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706–1715PubMed
7.
go back to reference Corrias MV, Basso S, Meazza R, Musiani P, Santi L, Bocca P, Occhino M, Ferrini S, Pistoia V (1998) Characterization and tumorigenicity of human neuroblastoma cells transfected with the IL-2 gene. Cancer Gene Ther 5:38–44PubMed Corrias MV, Basso S, Meazza R, Musiani P, Santi L, Bocca P, Occhino M, Ferrini S, Pistoia V (1998) Characterization and tumorigenicity of human neuroblastoma cells transfected with the IL-2 gene. Cancer Gene Ther 5:38–44PubMed
8.
go back to reference Ladenstein R, Pötschger U, Siabalis D et al (2011) Dose finding study for the use of subcutaneous recombinant interleukin-2 to augment natural killer cell numbers in an outpatient setting for stage 4 neuroblastoma after mega therapy and autologous stem-cell reinfusion. J Clin Oncol 29:441–448. doi:10.1200/JCO.2009.23.5465 PubMedCrossRef Ladenstein R, Pötschger U, Siabalis D et al (2011) Dose finding study for the use of subcutaneous recombinant interleukin-2 to augment natural killer cell numbers in an outpatient setting for stage 4 neuroblastoma after mega therapy and autologous stem-cell reinfusion. J Clin Oncol 29:441–448. doi:10.​1200/​JCO.​2009.​23.​5465 PubMedCrossRef
11.
go back to reference Bayer AL, Yu A, Adeegbe D, Malek TR (2005) Essential role for interleukin-2 for CD4(+) CD25(+) T regulatory cell development during the neonatal period. J Exp Med 201:769–777PubMedCentralPubMedCrossRef Bayer AL, Yu A, Adeegbe D, Malek TR (2005) Essential role for interleukin-2 for CD4(+) CD25(+) T regulatory cell development during the neonatal period. J Exp Med 201:769–777PubMedCentralPubMedCrossRef
13.
go back to reference Comes A, Rosso O, Orengo AM et al (2006) CD25+ regulatory T cell depletion augments immunotherapy of micrometastasis by an IL-21-secreting cellular vaccine. J Immunol 176:1750–1758PubMedCrossRef Comes A, Rosso O, Orengo AM et al (2006) CD25+ regulatory T cell depletion augments immunotherapy of micrometastasis by an IL-21-secreting cellular vaccine. J Immunol 176:1750–1758PubMedCrossRef
14.
go back to reference Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, Macdonald TT, Pallone F, Monteleone G (2007) IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178:732–739PubMedCrossRef Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, Macdonald TT, Pallone F, Monteleone G (2007) IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178:732–739PubMedCrossRef
15.
go back to reference Parrish-Novak J, Dillon SR, Nelson A et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63PubMedCrossRef Parrish-Novak J, Dillon SR, Nelson A et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63PubMedCrossRef
16.
go back to reference Albrecht J, Frey M, Teschner D, Carbol A, Theobald M, Herr W, Distler E (2011) IL-21-treated naive CD45RA+ CD8+ T cells represent a reliable source for producing leukemia-reactive cytotoxic T lymphocytes with high proliferative potential and early differentiation phenotype. Cancer Immunol Immunother 60:235–248. doi:10.1007/s00262-010-0936-8 PubMedCrossRef Albrecht J, Frey M, Teschner D, Carbol A, Theobald M, Herr W, Distler E (2011) IL-21-treated naive CD45RA+  CD8+ T cells represent a reliable source for producing leukemia-reactive cytotoxic T lymphocytes with high proliferative potential and early differentiation phenotype. Cancer Immunol Immunother 60:235–248. doi:10.​1007/​s00262-010-0936-8 PubMedCrossRef
18.
go back to reference Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA (2004) IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 173:900–909PubMedCrossRef Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA (2004) IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 173:900–909PubMedCrossRef
20.
go back to reference Di Carlo E, de Totero D, Piazza T, Fabbi M, Ferrini S (2007) Role of IL-21 in immune-regulation and tumor immunotherapy. Cancer Immunol Immunother 56:1323–1334PubMedCrossRef Di Carlo E, de Totero D, Piazza T, Fabbi M, Ferrini S (2007) Role of IL-21 in immune-regulation and tumor immunotherapy. Cancer Immunol Immunother 56:1323–1334PubMedCrossRef
23.
go back to reference Di Carlo E, Comes A, Orengo AM, Rosso O, Meazza R, Musiani P, Colombo MP, Ferrini S (2004) IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. J Immunol 172:1540–1547PubMedCrossRef Di Carlo E, Comes A, Orengo AM, Rosso O, Meazza R, Musiani P, Colombo MP, Ferrini S (2004) IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. J Immunol 172:1540–1547PubMedCrossRef
24.
go back to reference Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A, Ferrini S, Corte G (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121:1756–1763PubMedCrossRef Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A, Ferrini S, Corte G (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121:1756–1763PubMedCrossRef
25.
go back to reference Kowalczyk A, Wierzbicki A, Gil M et al (2007) Induction of protective immune responses against NXS2 neuroblastoma challenge in mice by immunotherapy with GD2 mimotope vaccine and IL-15 and IL-21 gene delivery. Cancer Immunol Immunother 56:1443–1458PubMedCrossRef Kowalczyk A, Wierzbicki A, Gil M et al (2007) Induction of protective immune responses against NXS2 neuroblastoma challenge in mice by immunotherapy with GD2 mimotope vaccine and IL-15 and IL-21 gene delivery. Cancer Immunol Immunother 56:1443–1458PubMedCrossRef
26.
go back to reference Dodds MG, Frederiksen KS, Skak K, Hansen LT, Lundsgaard D, Thompson JA, Hughes SD (2009) Immune activation in advanced cancer patients treated with recombinant IL-21: multianalyte profiling of serum proteins. Cancer Immunol Immunother 58:843–854. doi:10.1007/s00262-008-0600-8 PubMedCrossRef Dodds MG, Frederiksen KS, Skak K, Hansen LT, Lundsgaard D, Thompson JA, Hughes SD (2009) Immune activation in advanced cancer patients treated with recombinant IL-21: multianalyte profiling of serum proteins. Cancer Immunol Immunother 58:843–854. doi:10.​1007/​s00262-008-0600-8 PubMedCrossRef
27.
go back to reference Thompson JA, Curti BD, Redman BG, Bhatia S, Weber JS, Agarwala SS, Sievers EL, Hughes SD, DeVries TA, Hausman DF (2008) Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 26:2034–2039. doi:10.1200/JCO.2007.14.5193 PubMedCrossRef Thompson JA, Curti BD, Redman BG, Bhatia S, Weber JS, Agarwala SS, Sievers EL, Hughes SD, DeVries TA, Hausman DF (2008) Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 26:2034–2039. doi:10.​1200/​JCO.​2007.​14.​5193 PubMedCrossRef
28.
go back to reference Davis ID, Brady B, Kefford RF et al (2009) Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a phase IIa trial. Clin Cancer Res 15:2123–2129. doi:10.1158/1078-0432.CCR-08-2663 PubMedCrossRef Davis ID, Brady B, Kefford RF et al (2009) Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a phase IIa trial. Clin Cancer Res 15:2123–2129. doi:10.​1158/​1078-0432.​CCR-08-2663 PubMedCrossRef
30.
go back to reference Croce M, Corrias MV, Orengo AM, Brizzolara A, Carlini B, Borghi M, Rigo V, Pistoia V, Ferrini S (2010) Transient depletion of CD4(+) T cells augments IL-21-based immunotherapy of disseminated neuroblastoma in syngeneic mice. Int J Cancer 127:1141–1150. doi:10.1002/ijc.25140 PubMedCrossRef Croce M, Corrias MV, Orengo AM, Brizzolara A, Carlini B, Borghi M, Rigo V, Pistoia V, Ferrini S (2010) Transient depletion of CD4(+) T cells augments IL-21-based immunotherapy of disseminated neuroblastoma in syngeneic mice. Int J Cancer 127:1141–1150. doi:10.​1002/​ijc.​25140 PubMedCrossRef
31.
go back to reference Russell HV, Strother D, Mei Z, Rill D, Popek E, Biagi E, Yvon E, Brenner M, Rousseau R (2008) A phase 1/2 study of autologous neuroblastoma tumor cells genetically modified to secrete IL-2 in patients with high-risk neuroblastoma. J Immunother 31:812–819. doi:10.1097/CJI.0b013e3181869893 PubMedCrossRef Russell HV, Strother D, Mei Z, Rill D, Popek E, Biagi E, Yvon E, Brenner M, Rousseau R (2008) A phase 1/2 study of autologous neuroblastoma tumor cells genetically modified to secrete IL-2 in patients with high-risk neuroblastoma. J Immunother 31:812–819. doi:10.​1097/​CJI.​0b013e3181869893​ PubMedCrossRef
32.
go back to reference Rousseau RF, Haight AE, Hirschmann-Jax C et al (2003) Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotoxin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood 101:1718–1726PubMedCrossRef Rousseau RF, Haight AE, Hirschmann-Jax C et al (2003) Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotoxin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood 101:1718–1726PubMedCrossRef
34.
go back to reference Borsellino G, Kleinewietfeld M, Di Mitri D et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232PubMedCrossRef Borsellino G, Kleinewietfeld M, Di Mitri D et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232PubMedCrossRef
35.
go back to reference Annacker O, Coombes JL, Malmstrom V et al (2005) Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051–1061PubMedCentralPubMedCrossRef Annacker O, Coombes JL, Malmstrom V et al (2005) Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051–1061PubMedCentralPubMedCrossRef
36.
go back to reference Chesler L, Goldenberg DD, Seales IT et al (2007) Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Res 67:9435–9442PubMedCentralPubMedCrossRef Chesler L, Goldenberg DD, Seales IT et al (2007) Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Res 67:9435–9442PubMedCentralPubMedCrossRef
37.
go back to reference Colombo MP, Piconese S (2007) Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7:880–887PubMedCrossRef Colombo MP, Piconese S (2007) Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7:880–887PubMedCrossRef
39.
go back to reference Frumento G, Piazza T, Di Carlo E, Ferrini S (2006) Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets 6:233–237PubMedCrossRef Frumento G, Piazza T, Di Carlo E, Ferrini S (2006) Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets 6:233–237PubMedCrossRef
40.
go back to reference Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings M (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50PubMedCrossRef Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings M (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50PubMedCrossRef
42.
go back to reference Heinzel FP, Rerko RM (1999) Cure of progressive murine leishmaniasis: interleukin 4 dominance is abolished by transient CD4(+) T cell depletion and T helper cell type 1-selective cytokine therapy. J Exp Med 189:1895–1906PubMedCentralPubMedCrossRef Heinzel FP, Rerko RM (1999) Cure of progressive murine leishmaniasis: interleukin 4 dominance is abolished by transient CD4(+) T cell depletion and T helper cell type 1-selective cytokine therapy. J Exp Med 189:1895–1906PubMedCentralPubMedCrossRef
44.
45.
go back to reference Kim YH, Duvic M, Obitz E et al (2007) Clinical efficacy of zanolimumab (HuMax-CD4), two Phase 2 studies in refractory cutaneous T cell lymphoma. Blood 109:4655–4662PubMedCrossRef Kim YH, Duvic M, Obitz E et al (2007) Clinical efficacy of zanolimumab (HuMax-CD4), two Phase 2 studies in refractory cutaneous T cell lymphoma. Blood 109:4655–4662PubMedCrossRef
Metadata
Title
Recombinant IL-21 and anti-CD4 antibodies cooperate in syngeneic neuroblastoma immunotherapy and mediate long-lasting immunity
Authors
Valentina Rigo
Maria Valeria Corrias
Anna Maria Orengo
Antonella Brizzolara
Laura Emionite
Daniela Fenoglio
Gilberto Filaci
Michela Croce
Silvano Ferrini
Publication date
01-05-2014
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 5/2014
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1536-9

Other articles of this Issue 5/2014

Cancer Immunology, Immunotherapy 5/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine