Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2012

Open Access 01-12-2012 | Oral presentation

Recent advances in understanding of various chronic pain mechanisms through lysophosphatidic acid (LPA) receptor signaling

Author: Hiroshi Ueda

Published in: Arthritis Research & Therapy | Special Issue 1/2012

Login to get access

Excerpt

Lysophosphatidic acid (LPA) receptor (LPA1) signaling plays the key role in initiation of nerve injury-induced neuropathic pain [14]. LPA, which is produced in the spinal cord following the sciatic nerve injury causes a calpain-mediated demyelination of dorsal root fibers and sprouting through LPA1 receptor, leading to an induction of synaptic reorganization underlying allodynia. The LPA1 signaling also initiates the up-regulation of Cavα2δ1 in DRG, leading to an enhancement of spinal pain transmission underlying hyperalgesia. Similar LPA1-mediated chronic abnormal pain and underlying mechanisms are observed in mouse models with Meth-A sarcoma surrounding sciatic nerve (cancer model) or with chemotherapy (paclitaxel). Central neuropathic pain following spinal nerve injury is now recently found to include the LPA1-mediated mechanisms. In contrast, (arthritic) inflammatory pain following Complete Freund Adjuvant treatment fails to show the involvement of LPA1 signaling. Thus it seems that many models of neuropathic pain, but not inflammatory pain model include LPA1-mediated mechanisms. …
Literature
1.
go back to reference Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med. 2004, 10: 712-718. 10.1038/nm1060.CrossRefPubMed Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med. 2004, 10: 712-718. 10.1038/nm1060.CrossRefPubMed
2.
go back to reference Ueda H: Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther. 2006, 109: 57-77. 10.1016/j.pharmthera.2005.06.003. ReviewCrossRefPubMed Ueda H: Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther. 2006, 109: 57-77. 10.1016/j.pharmthera.2005.06.003. ReviewCrossRefPubMed
3.
go back to reference Ueda H: Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain. 2008, 4: 11-10.1186/1744-8069-4-11. ReviewPubMedCentralCrossRefPubMed Ueda H: Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain. 2008, 4: 11-10.1186/1744-8069-4-11. ReviewPubMedCentralCrossRefPubMed
4.
go back to reference Ueda H: Lysophosphatidic acid as the initiator of neuropathic pain. Biol Pharm Bull. 2011, 34: 1154-1158. 10.1248/bpb.34.1154. ReviewCrossRefPubMed Ueda H: Lysophosphatidic acid as the initiator of neuropathic pain. Biol Pharm Bull. 2011, 34: 1154-1158. 10.1248/bpb.34.1154. ReviewCrossRefPubMed
Metadata
Title
Recent advances in understanding of various chronic pain mechanisms through lysophosphatidic acid (LPA) receptor signaling
Author
Hiroshi Ueda
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue Special Issue 1/2012
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar3561

Other articles of this Special Issue 1/2012

Arthritis Research & Therapy 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine