Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2009

Open Access 01-12-2009 | Research

Real time noninvasive assessment of external trunk geometry during surgical correction of adolescent idiopathic scoliosis

Authors: Luc Duong, Jean-Marc Mac-Thiong, Hubert Labelle

Published in: Scoliosis and Spinal Disorders | Issue 1/2009

Login to get access

Abstract

Background

The correction of trunk deformity is crucial in scoliosis surgery, especially for the patient's self-image. However, direct visualization of external scoliotic trunk deformity during surgical correction is difficult due to the covering draping sheets.

Methods

An optoelectronic camera system with 10 passive markers is used to track the trunk geometry of 5 scoliotic patients during corrective surgery. The position of 10 anatomical landmarks and 5 trunk indices computed from the position of the passive markers are compared during and after instrumentation of the spine.

Results

Internal validation of the accuracy of tracking was evaluated at 0.41 +/- 0.05 mm RMS. Intra operative tracking during surgical maneuvers shows improvement of the shoulder balance during and after correction of the spine. Improvement of the overall patient balance is observed. At last, a minor increase of the spinal length can be noticed.

Conclusion

Tracking of the external geometry of the trunk during surgical correction is useful to monitor changes occurring under the sterile draping sheets. Moreover, this technique can used be used to reach the optimal configuration on the operating frame before proceeding to surgery. The current tracking technique was able to detect significant changes in trunk geometry caused by posterior instrumentation of the spine despite significant correction of the spinal curvature. It could therefore become relevant for computer-assisted guidance of surgical maneuvers when performing posterior instrumentation of the scoliotic spine, provide important insights during positioning of patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stokes IA, Bigalow LC, Moreland MS: Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res. 1987, 5: 102-13. 10.1002/jor.1100050113.CrossRefPubMed Stokes IA, Bigalow LC, Moreland MS: Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res. 1987, 5: 102-13. 10.1002/jor.1100050113.CrossRefPubMed
2.
go back to reference Perdriolle R, Le Borgne P, Dansereau J: Idiopathic scoliosis in three dimensions: a succession of two-dimensional deformities?. Spine. 2001, 26: 2719-26. 10.1097/00007632-200112150-00019.CrossRefPubMed Perdriolle R, Le Borgne P, Dansereau J: Idiopathic scoliosis in three dimensions: a succession of two-dimensional deformities?. Spine. 2001, 26: 2719-26. 10.1097/00007632-200112150-00019.CrossRefPubMed
3.
go back to reference Bridwell KH: Surgical treatment of idiopathic adolescent scoliosis. Spine. 1999, 24: 2607-2616. 10.1097/00007632-199912150-00008.CrossRefPubMed Bridwell KH: Surgical treatment of idiopathic adolescent scoliosis. Spine. 1999, 24: 2607-2616. 10.1097/00007632-199912150-00008.CrossRefPubMed
4.
go back to reference Drerup B: Accuracy requirements in optical back shape analysis. What is enough for the clinic?. Research into spinal deformities I. 1997, Amsterdam: IOS Press, 477-480. Drerup B: Accuracy requirements in optical back shape analysis. What is enough for the clinic?. Research into spinal deformities I. 1997, Amsterdam: IOS Press, 477-480.
5.
go back to reference Martin-Benlloch A, Wood K, Transfeldt EE: The use of intra-operative x-rays to evaluate parameters of spinal balance following posterior instrumentation for adolescent idiopathic scoliosis. Eurospine Innsbruck, Austria. 1998 Martin-Benlloch A, Wood K, Transfeldt EE: The use of intra-operative x-rays to evaluate parameters of spinal balance following posterior instrumentation for adolescent idiopathic scoliosis. Eurospine Innsbruck, Austria. 1998
6.
go back to reference Mac-Thiong JM, Labelle H, Vandal S, Aubin CE: Intra-operative tracking of the trunk during surgical correction of scoliosis: a feasibility study. Comput Aided Surg. 2000, 5 (5): 333-42.CrossRefPubMed Mac-Thiong JM, Labelle H, Vandal S, Aubin CE: Intra-operative tracking of the trunk during surgical correction of scoliosis: a feasibility study. Comput Aided Surg. 2000, 5 (5): 333-42.CrossRefPubMed
7.
go back to reference Mac-Thiong JM, Labelle H, Duong L, Aubin CE: A new technique for intraoperative analysis of trunk geometry in adolescent idiopathic scoliosis. Can J Surg. 2002, 45 (3): 219-23.PubMedPubMedCentral Mac-Thiong JM, Labelle H, Duong L, Aubin CE: A new technique for intraoperative analysis of trunk geometry in adolescent idiopathic scoliosis. Can J Surg. 2002, 45 (3): 219-23.PubMedPubMedCentral
8.
go back to reference Amiot LP, Lang K, Putzier M, Zippel H, Labelle H: Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine. 2000, 25 (5): 606-14. 10.1097/00007632-200003010-00012.CrossRefPubMed Amiot LP, Lang K, Putzier M, Zippel H, Labelle H: Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine. 2000, 25 (5): 606-14. 10.1097/00007632-200003010-00012.CrossRefPubMed
9.
go back to reference Poulin F, Amiot LP: Interference during the use of an electromagnetic tracking system under OR conditions. J Biomech. 2002, 35 (6): 733-7. 10.1016/S0021-9290(02)00036-2.CrossRefPubMed Poulin F, Amiot LP: Interference during the use of an electromagnetic tracking system under OR conditions. J Biomech. 2002, 35 (6): 733-7. 10.1016/S0021-9290(02)00036-2.CrossRefPubMed
10.
go back to reference Stone JJ, Currier BL, Niebur GL, An KN: The use of a direct current electromagnetic tracking device in a metallic environment. Biomed Sci Instrum. 1996, 32: 305-11.PubMed Stone JJ, Currier BL, Niebur GL, An KN: The use of a direct current electromagnetic tracking device in a metallic environment. Biomed Sci Instrum. 1996, 32: 305-11.PubMed
11.
go back to reference Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R, Ewers R, Bergmann H: Systematic distortions in magnetic position digitizers. Med Phys. 1998, 25 (11): 2242-8. 10.1118/1.598425.CrossRefPubMed Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R, Ewers R, Bergmann H: Systematic distortions in magnetic position digitizers. Med Phys. 1998, 25 (11): 2242-8. 10.1118/1.598425.CrossRefPubMed
12.
go back to reference Simon DA: Intra-operative position sensing and tracking devices. Proceedings of the First Joint CVRMed/MRCAS Conference. 1997, 62-64. Simon DA: Intra-operative position sensing and tracking devices. Proceedings of the First Joint CVRMed/MRCAS Conference. 1997, 62-64.
13.
go back to reference Stokes IA: Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine. 1994, 19 (2): 236-48.CrossRefPubMed Stokes IA: Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine. 1994, 19 (2): 236-48.CrossRefPubMed
14.
go back to reference Cheriet F, Delorme S, Dansereau J, Aubin CE, de Guise JA, Labelle H: [Perioperative radiographic reconstruction of the scoliotic vertebral column]. Ann Chir. 1999, 53 (8): 808-15.PubMed Cheriet F, Delorme S, Dansereau J, Aubin CE, de Guise JA, Labelle H: [Perioperative radiographic reconstruction of the scoliotic vertebral column]. Ann Chir. 1999, 53 (8): 808-15.PubMed
15.
go back to reference Delorme S, Labelle H, Poitras B, Rivard CH, Coillard C, Dansereau J: Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord. 2000, 13 (2): 93-101. 10.1097/00002517-200004000-00001.CrossRefPubMed Delorme S, Labelle H, Poitras B, Rivard CH, Coillard C, Dansereau J: Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord. 2000, 13 (2): 93-101. 10.1097/00002517-200004000-00001.CrossRefPubMed
16.
go back to reference Callahan RA, Brown MD: Positioning techniques in spinal surgery. Clin Orthop. 1981, 22-6. 154 Callahan RA, Brown MD: Positioning techniques in spinal surgery. Clin Orthop. 1981, 22-6. 154
17.
go back to reference Kramers-de Quervain IA, Müller R, Stacoff A, Grob D, Stüssi E: Gait analysis in patients with idiopathic scoliosis. Eur Spine J. 2004, 13 (5): 449-56. 10.1007/s00586-003-0588-x.CrossRefPubMedPubMedCentral Kramers-de Quervain IA, Müller R, Stacoff A, Grob D, Stüssi E: Gait analysis in patients with idiopathic scoliosis. Eur Spine J. 2004, 13 (5): 449-56. 10.1007/s00586-003-0588-x.CrossRefPubMedPubMedCentral
18.
go back to reference Park EJ, Huang K, Sakaki K: Development of a real-time three-dimensional spinal motion measurement system for clinical practice. Med Biol Eng Comput. 2006, 44 (12): 1061-75. 10.1007/s11517-006-0132-3.CrossRefPubMed Park EJ, Huang K, Sakaki K: Development of a real-time three-dimensional spinal motion measurement system for clinical practice. Med Biol Eng Comput. 2006, 44 (12): 1061-75. 10.1007/s11517-006-0132-3.CrossRefPubMed
Metadata
Title
Real time noninvasive assessment of external trunk geometry during surgical correction of adolescent idiopathic scoliosis
Authors
Luc Duong
Jean-Marc Mac-Thiong
Hubert Labelle
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2009
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-4-5

Other articles of this Issue 1/2009

Scoliosis and Spinal Disorders 1/2009 Go to the issue