Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 6/2016

01-12-2016 | Original Research

Real alerts and artifact classification in archived multi-signal vital sign monitoring data: implications for mining big data

Authors: Marilyn Hravnak, Lujie Chen, Artur Dubrawski, Eliezer Bose, Gilles Clermont, Michael R. Pinsky

Published in: Journal of Clinical Monitoring and Computing | Issue 6/2016

Login to get access

Abstract

Huge hospital information system databases can be mined for knowledge discovery and decision support, but artifact in stored non-invasive vital sign (VS) high-frequency data streams limits its use. We used machine-learning (ML) algorithms trained on expert-labeled VS data streams to automatically classify VS alerts as real or artifact, thereby “cleaning” such data for future modeling. 634 admissions to a step-down unit had recorded continuous noninvasive VS monitoring data [heart rate (HR), respiratory rate (RR), peripheral arterial oxygen saturation (SpO2) at 1/20 Hz, and noninvasive oscillometric blood pressure (BP)]. Time data were across stability thresholds defined VS event epochs. Data were divided Block 1 as the ML training/cross-validation set and Block 2 the test set. Expert clinicians annotated Block 1 events as perceived real or artifact. After feature extraction, ML algorithms were trained to create and validate models automatically classifying events as real or artifact. The models were then tested on Block 2. Block 1 yielded 812 VS events, with 214 (26 %) judged by experts as artifact (RR 43 %, SpO2 40 %, BP 15 %, HR 2 %). ML algorithms applied to the Block 1 training/cross-validation set (tenfold cross-validation) gave area under the curve (AUC) scores of 0.97 RR, 0.91 BP and 0.76 SpO2. Performance when applied to Block 2 test data was AUC 0.94 RR, 0.84 BP and 0.72 SpO2. ML-defined algorithms applied to archived multi-signal continuous VS monitoring data allowed accurate automated classification of VS alerts as real or artifact, and could support data mining for future model building.
Appendix
Available only for authorised users
Literature
1.
go back to reference Otero A, Félix P, Barro S, Palacios F. Addressing the flaws of current critical alarms: a fuzzy constraint satisfaction approach. Artif Intell Med. 2009;47:219–38.CrossRefPubMed Otero A, Félix P, Barro S, Palacios F. Addressing the flaws of current critical alarms: a fuzzy constraint satisfaction approach. Artif Intell Med. 2009;47:219–38.CrossRefPubMed
2.
go back to reference Takla G, Petre JH, Doyle DJ, Horibe M, Gopakumaran B. The problem of artifacts in patient monitor data during surgery: a clinical and methodological review. Anesth Analg. 2006;103:1196–204.CrossRefPubMed Takla G, Petre JH, Doyle DJ, Horibe M, Gopakumaran B. The problem of artifacts in patient monitor data during surgery: a clinical and methodological review. Anesth Analg. 2006;103:1196–204.CrossRefPubMed
3.
go back to reference Smith M. Rx for ECG monitoring artifact. Crit Care Nurse. 1984;4:64.PubMed Smith M. Rx for ECG monitoring artifact. Crit Care Nurse. 1984;4:64.PubMed
4.
6.
go back to reference Merelli I, Perez-Sanchez H, Gesing S, D’Agostino, D. Managing, analysing, and integrating big data in medical bioinformatics: open problems and future perspectives. DioMed Res Int 2104, Article ID 134024. doi:10.1155/2014/134023 Merelli I, Perez-Sanchez H, Gesing S, D’Agostino, D. Managing, analysing, and integrating big data in medical bioinformatics: open problems and future perspectives. DioMed Res Int 2104, Article ID 134024. doi:10.​1155/​2014/​134023
7.
go back to reference Peek N, Holmes JH, Sun J. Technical challenges for big data in biomedicine and health: data sources, infrastructure and analytics. Yearb Med Inform. 2014;9(1):42–7.CrossRefPubMedPubMedCentral Peek N, Holmes JH, Sun J. Technical challenges for big data in biomedicine and health: data sources, infrastructure and analytics. Yearb Med Inform. 2014;9(1):42–7.CrossRefPubMedPubMedCentral
8.
go back to reference Zhang B, Wang Y, Chen F. Multilabel image classification via high-order label correlation driven active learning. IEEE Trans Image Process. 2014;23:1430–41.CrossRefPubMed Zhang B, Wang Y, Chen F. Multilabel image classification via high-order label correlation driven active learning. IEEE Trans Image Process. 2014;23:1430–41.CrossRefPubMed
9.
go back to reference Zhu Y, Zhang S, Liu W, Metaxas DN. Scalable histopathological image analysis via active learning. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):369–76.PubMed Zhu Y, Zhang S, Liu W, Metaxas DN. Scalable histopathological image analysis via active learning. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):369–76.PubMed
10.
go back to reference Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
11.
go back to reference Acharya UR, Sree SV, Ribeiro R, et al. Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys. 2012;39:4255–64.CrossRefPubMed Acharya UR, Sree SV, Ribeiro R, et al. Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys. 2012;39:4255–64.CrossRefPubMed
12.
go back to reference Acharya UR, Sree SV, Muthu Rama Krishnan M, et al. Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput Methods Programs Biomed. 2013;112:624–32.CrossRefPubMed Acharya UR, Sree SV, Muthu Rama Krishnan M, et al. Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput Methods Programs Biomed. 2013;112:624–32.CrossRefPubMed
13.
14.
go back to reference Halford JJ, Schalkoff RJ, Zhou J, et al. Standardized database development for EEG epileptiform transient detection: EEGnet scoring system and machine learning analysis. J Neurosci Methods. 2013;212:308–16.CrossRefPubMed Halford JJ, Schalkoff RJ, Zhou J, et al. Standardized database development for EEG epileptiform transient detection: EEGnet scoring system and machine learning analysis. J Neurosci Methods. 2013;212:308–16.CrossRefPubMed
15.
go back to reference Kim S, Hamilton R, Pineles S, Bergsneider M, Hu X. Noninvasive intracranial hypertension detection utilizing semisupervised learning. IEEE Trans Biomed Eng. 2013;60:1126–33.CrossRefPubMed Kim S, Hamilton R, Pineles S, Bergsneider M, Hu X. Noninvasive intracranial hypertension detection utilizing semisupervised learning. IEEE Trans Biomed Eng. 2013;60:1126–33.CrossRefPubMed
16.
go back to reference Zweigenbaum P, Lavergne T, Grabar N, Hamon T, Rosset S, Grouin C. Combining an expert-based medical entity recognizer to a machine-learning system: methods and a case study. Biomed Inform Insights. 2013;6(Suppl 1):51–62.CrossRefPubMedPubMedCentral Zweigenbaum P, Lavergne T, Grabar N, Hamon T, Rosset S, Grouin C. Combining an expert-based medical entity recognizer to a machine-learning system: methods and a case study. Biomed Inform Insights. 2013;6(Suppl 1):51–62.CrossRefPubMedPubMedCentral
17.
go back to reference Kruppa J, Liu Y, Biau G, et al. Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory. Biomed J. 2014;56:534–63. Kruppa J, Liu Y, Biau G, et al. Probability estimation with machine learning methods for dichotomous and multicategory outcome: theory. Biomed J. 2014;56:534–63.
18.
go back to reference Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. Cambridge: MIT Press; 2012. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. Cambridge: MIT Press; 2012.
19.
go back to reference Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med. 2011;39:952–60.CrossRefPubMedPubMedCentral Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med. 2011;39:952–60.CrossRefPubMedPubMedCentral
20.
go back to reference Li Q, Clifford GD. Signal quality and data fusion for false alarm reduction in the intensive care unit. J Electrocardiol. 2012;45:596–603.CrossRefPubMed Li Q, Clifford GD. Signal quality and data fusion for false alarm reduction in the intensive care unit. J Electrocardiol. 2012;45:596–603.CrossRefPubMed
21.
go back to reference Clifford GC, Scott DJ, Villarroel M. User guide and documentation for the MIMIC II database. MIMIC-II database version 2.6, Rev: 291 Last Changed Date: 2012-02-24 15:53:51-0500 (24 Feb 2012). Clifford GC, Scott DJ, Villarroel M. User guide and documentation for the MIMIC II database. MIMIC-II database version 2.6, Rev: 291 Last Changed Date: 2012-02-24 15:53:51-0500 (24 Feb 2012).
22.
go back to reference Aboukhalil A, Nielsen L, Saeed M, Mark RG, Clifford GD. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. J Biomed Inform. 2008;41:442–51.CrossRefPubMedPubMedCentral Aboukhalil A, Nielsen L, Saeed M, Mark RG, Clifford GD. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. J Biomed Inform. 2008;41:442–51.CrossRefPubMedPubMedCentral
23.
go back to reference Lehman LH, Adams RP, Mayaud L, Moody GB, Malhotra A, Mark RG, Nemati S. A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J Biomed Health Inform. 2014;PP(99):1. doi:10.1109/JBHI.2014.2330827. Lehman LH, Adams RP, Mayaud L, Moody GB, Malhotra A, Mark RG, Nemati S. A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J Biomed Health Inform. 2014;PP(99):1. doi:10.​1109/​JBHI.​2014.​2330827.
24.
go back to reference Heldt T, Kashif FM, Sulemanji M, O’Leary HM, du Plessis AJ, Verghese GC. Continuous quantitative monitoring of cerebral oxygen metabolism in neonates by ventilator-gated analysis of NIRS recordings. Acta Neurochir Suppl. 2012;114:177–80.CrossRefPubMedPubMedCentral Heldt T, Kashif FM, Sulemanji M, O’Leary HM, du Plessis AJ, Verghese GC. Continuous quantitative monitoring of cerebral oxygen metabolism in neonates by ventilator-gated analysis of NIRS recordings. Acta Neurochir Suppl. 2012;114:177–80.CrossRefPubMedPubMedCentral
25.
go back to reference Hug C, Clifford GD, Reisner AT. Clinician blood pressure documentation of stable intensive care patients: an intelligent archiving agent has a higher association with future hypotension. Crit Care Med. 2011;39:1006–14.CrossRefPubMedPubMedCentral Hug C, Clifford GD, Reisner AT. Clinician blood pressure documentation of stable intensive care patients: an intelligent archiving agent has a higher association with future hypotension. Crit Care Med. 2011;39:1006–14.CrossRefPubMedPubMedCentral
26.
go back to reference Boumbarov O, Velchev Y, Sokolov S. ECG personal identification in subspaces using radial basis neural networks. In: 2009 IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications, 2009 IDAACS IEEE 2009, p. 446–51. Boumbarov O, Velchev Y, Sokolov S. ECG personal identification in subspaces using radial basis neural networks. In: 2009 IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications, 2009 IDAACS IEEE 2009, p. 446–51.
27.
go back to reference Paul JS, Reddy MR, Kumar VJ. A transform domain SVD filter for suppression of muscle noise artifacts in exercise ECG’s. IEEE Trans Biomed Eng. 2000;47:654–63.CrossRefPubMed Paul JS, Reddy MR, Kumar VJ. A transform domain SVD filter for suppression of muscle noise artifacts in exercise ECG’s. IEEE Trans Biomed Eng. 2000;47:654–63.CrossRefPubMed
28.
go back to reference Marque C, Bisch C, Dantas R, Elayoubi S, Brosse V, Perot C. Adaptive filtering for ECG rejection from surface EMG recordings. J Electromyogr Kinesiol. 2005;15:310–5.CrossRefPubMed Marque C, Bisch C, Dantas R, Elayoubi S, Brosse V, Perot C. Adaptive filtering for ECG rejection from surface EMG recordings. J Electromyogr Kinesiol. 2005;15:310–5.CrossRefPubMed
29.
go back to reference Lu G, Brittain J-S, Holland P, et al. Removing ECG noise from surface EMG signals using adaptive filtering. Neurosci Lett. 2009;462:14–9.CrossRefPubMed Lu G, Brittain J-S, Holland P, et al. Removing ECG noise from surface EMG signals using adaptive filtering. Neurosci Lett. 2009;462:14–9.CrossRefPubMed
30.
go back to reference Ko BH, Lee T, Choi C, Kim YH, Park G, Kang K, Bae SK, Shin K. Motion artifact in the electrocardiogram using adaptive filtering on behalf of half cell potential monitoring. Conf Proc IEEE Eng Med Biol Soc. 2012;2102:1590–3. doi:10.1109/EMBC.2012.6346248. Ko BH, Lee T, Choi C, Kim YH, Park G, Kang K, Bae SK, Shin K. Motion artifact in the electrocardiogram using adaptive filtering on behalf of half cell potential monitoring. Conf Proc IEEE Eng Med Biol Soc. 2012;2102:1590–3. doi:10.​1109/​EMBC.​2012.​6346248.
31.
go back to reference Hamilton PS, Curley M, Aimi R. Effect of adaptive motion-artifact reduction on QRS detection. Biomed Instrum Technol. 2000;34:197–202.PubMed Hamilton PS, Curley M, Aimi R. Effect of adaptive motion-artifact reduction on QRS detection. Biomed Instrum Technol. 2000;34:197–202.PubMed
32.
go back to reference Thakral A, Wallace J, Tomlin D, Seth N, Thakor NV. Surgical motion adaptive robotic technology (SMART): taking the motion out of physiological motion. In: Medical image computing and computer-assisted intervention–MICCAI 2001. Springer; 2001;p. 317–25. Thakral A, Wallace J, Tomlin D, Seth N, Thakor NV. Surgical motion adaptive robotic technology (SMART): taking the motion out of physiological motion. In: Medical image computing and computer-assisted intervention–MICCAI 2001. Springer; 2001;p. 317–25.
33.
go back to reference Chong JW, Dao DK, Salehizadeh SM, McManus DD, Darling CE, Chon KH, Mendelson Y. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: motion and noise artifact detection. Ann Biomed Eng. 2014;42(11):2238–50. doi:10.1007/s10439-014-1080-y (Epub 5 Aug 2014). Chong JW, Dao DK, Salehizadeh SM, McManus DD, Darling CE, Chon KH, Mendelson Y. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: motion and noise artifact detection. Ann Biomed Eng. 2014;42(11):2238–50. doi:10.​1007/​s10439-014-1080-y (Epub 5 Aug 2014).
34.
go back to reference Tsien CL. Event discovery in medical time-series data. In: Proceedings AMIA symposium 2000; p. 858–62. Tsien CL. Event discovery in medical time-series data. In: Proceedings AMIA symposium 2000; p. 858–62.
35.
go back to reference Hu X, Sapo M, Nenov V, et al. Predictive combinations of monitor alarms preceding in-hospital code blue events. J Biomed Inform. 2012;45:913–21.CrossRefPubMed Hu X, Sapo M, Nenov V, et al. Predictive combinations of monitor alarms preceding in-hospital code blue events. J Biomed Inform. 2012;45:913–21.CrossRefPubMed
36.
go back to reference Cao H, Norris P, Ozdas A, Jenkins J, Morris JA. A simple non-physiological artifact filter for invasive arterial blood pressure monitoring: a study of 1852 trauma ICU patients. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1417–20.PubMed Cao H, Norris P, Ozdas A, Jenkins J, Morris JA. A simple non-physiological artifact filter for invasive arterial blood pressure monitoring: a study of 1852 trauma ICU patients. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1417–20.PubMed
37.
go back to reference Görges M, Winton P, Koval V, et al. An evaluation of an expert system for detecting critical events during anesthesia in a human patient simulator: a prospective randomized controlled study. Anesth Analg. 2013;117:380–91.CrossRefPubMed Görges M, Winton P, Koval V, et al. An evaluation of an expert system for detecting critical events during anesthesia in a human patient simulator: a prospective randomized controlled study. Anesth Analg. 2013;117:380–91.CrossRefPubMed
38.
go back to reference Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Crit Care Med. 2013;41:554–64.CrossRefPubMed Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Crit Care Med. 2013;41:554–64.CrossRefPubMed
39.
go back to reference Siebig S, Kuhls S, Imhoff M, Langgartner J, Reng M, Scholmerich J, Gather U, Wrede CE. Collection of annotated data in a clinical validation study for alarm algorithms in intensive care—a methodologic framework. J Crit Care. 2010;25:128–35.CrossRefPubMed Siebig S, Kuhls S, Imhoff M, Langgartner J, Reng M, Scholmerich J, Gather U, Wrede CE. Collection of annotated data in a clinical validation study for alarm algorithms in intensive care—a methodologic framework. J Crit Care. 2010;25:128–35.CrossRefPubMed
40.
go back to reference Bonafide CP, Sander M, Graham CS, Werich Paine CM, Rock W, Rich A, Roberts KE, Fortino M, Nadkarni VM, Lin R, Keren R. Video methods for evaluating physiologic monitor alarms and alarm responses. Biomed Instrum Technol. 2014;48:220–30.CrossRefPubMed Bonafide CP, Sander M, Graham CS, Werich Paine CM, Rock W, Rich A, Roberts KE, Fortino M, Nadkarni VM, Lin R, Keren R. Video methods for evaluating physiologic monitor alarms and alarm responses. Biomed Instrum Technol. 2014;48:220–30.CrossRefPubMed
41.
go back to reference Siebig S, Kuhls S, Imhoff M, Gather U, Schölmerich J, Wrede CE. Intensive care unit alarms—How many do we need? Crit Care Med. 2010;38:451–6.CrossRefPubMed Siebig S, Kuhls S, Imhoff M, Gather U, Schölmerich J, Wrede CE. Intensive care unit alarms—How many do we need? Crit Care Med. 2010;38:451–6.CrossRefPubMed
42.
go back to reference Kleinberg S, Elhadad N. Lessons learned in replicating data-driven experiments in multiple medical systems and patient populations. In: AMIA annual symposium proceedings 2013; vol 16, p. 786–95 (eCollection 2013). Kleinberg S, Elhadad N. Lessons learned in replicating data-driven experiments in multiple medical systems and patient populations. In: AMIA annual symposium proceedings 2013; vol 16, p. 786–95 (eCollection 2013).
43.
go back to reference Goldstein B, McNames J, McDonald BA, et al. Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit. Crit Care Med. 2003;31:433–41.CrossRefPubMed Goldstein B, McNames J, McDonald BA, et al. Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit. Crit Care Med. 2003;31:433–41.CrossRefPubMed
44.
go back to reference Silaganesan A, Manley G, Huang MC. Informatics for neurocritical care: challenges and opportunity. Neurocrit Care. 2014;20:132–41.CrossRef Silaganesan A, Manley G, Huang MC. Informatics for neurocritical care: challenges and opportunity. Neurocrit Care. 2014;20:132–41.CrossRef
45.
go back to reference Della MV, Maddalena E, Mizzaro S, Machin P, Beltrami CA. Preliminary results from a crowdsourcing experiment in immunohistochemistry. Diagn Pathol. 2014;9(1):1069. doi:10.1186/1746-1596-9-S1-S6. Della MV, Maddalena E, Mizzaro S, Machin P, Beltrami CA. Preliminary results from a crowdsourcing experiment in immunohistochemistry. Diagn Pathol. 2014;9(1):1069. doi:10.​1186/​1746-1596-9-S1-S6.
46.
go back to reference Ranard BL, Ha YP, Meisel ZF, Asch DA, Hill SS, Becker LB, Seymour AK, Merchant RM. Crowdsourcing—harnessing the masses to advance health and medicine, a systematic review. J Gen Intern Med. 2014;29:187–203.CrossRefPubMed Ranard BL, Ha YP, Meisel ZF, Asch DA, Hill SS, Becker LB, Seymour AK, Merchant RM. Crowdsourcing—harnessing the masses to advance health and medicine, a systematic review. J Gen Intern Med. 2014;29:187–203.CrossRefPubMed
Metadata
Title
Real alerts and artifact classification in archived multi-signal vital sign monitoring data: implications for mining big data
Authors
Marilyn Hravnak
Lujie Chen
Artur Dubrawski
Eliezer Bose
Gilles Clermont
Michael R. Pinsky
Publication date
01-12-2016
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 6/2016
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-015-9788-2

Other articles of this Issue 6/2016

Journal of Clinical Monitoring and Computing 6/2016 Go to the issue