Skip to main content
Top
Published in: BMC Cancer 1/2006

Open Access 01-12-2006 | Research article

Rapid chemokinetic movement and the invasive potential of lung cancer cells; a functional molecular study

Authors: Sandra YY Fok, Jeffrey S Rubin, Fiona Pixley, John Condeelis, Filip Braet, Lilian L Soon

Published in: BMC Cancer | Issue 1/2006

Login to get access

Abstract

Background

Non-small cell lung cancer is the most common cause of early casualty from malignant disease in western countries. The heterogeneous nature of these cells has been identified by histochemical and microarray biomarker analyses. Unfortunately, the morphological, molecular and biological variation within cell lines used as models for invasion and metastasis are not well understood. In this study, we test the hypothesis that heterogeneous cancer cells exhibit variable motility responses such as chemokinesis and chemotaxis that can be characterized molecularly.

Methods

A subpopulation of H460 lung cancer cells called KINE that migrated under chemokinetic (no gradient) conditions was harvested from Boyden chambers and cultured. Time-lapsed microscopy, immunofluorescence microscopy and microarray analyses were then carried out comparing chemokinetic KINE cells with the unselected CON cell population.

Results

Time-lapsed microscopy and analysis showed that KINE cells moved faster but less directionally than the unselected control population (CON), confirming their chemokinetic character. Of note was that chemokinetic KINE cells also chemotaxed efficiently. KINE cells were less adhesive to substrate than CON cells and demonstrated loss of mature focal adhesions at the leading edge and the presence of non-focalized cortical actin. These characteristics are common in highly motile amoeboid cells that may favour faster motility speeds. KINE cells were also significantly more invasive compared to CON. Gene array studies and real-time PCR showed the downregulation of a gene called, ROM, in highly chemokinetic KINE compared to mainly chemotactic CON cells. ROM was also reduced in expression in a panel of lung cancer cell lines compared to normal lung cells.

Conclusion

This study shows that cancer cells that are efficient in both chemokinesis and chemotaxis demonstrate high invasion levels. These cells possess different morphological, cytoskeletal and adhesive properties from another population that are only efficient at chemotaxis, indicating a loss in polarity. Understanding the regulation of polarity in the context of cell motility is important in order to improve control and inhibition of invasion and metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Petty RD, Nicolson MC, Kerr KM, Collie-Duguid E, Murray GI: Gene expression profiling in non-small cell lung cancer: from molecular mechanisms to clinical application. Clin Cancer Res. 2004, 10: 3237-3248. 10.1158/1078-0432.CCR-03-0503.CrossRefPubMed Petty RD, Nicolson MC, Kerr KM, Collie-Duguid E, Murray GI: Gene expression profiling in non-small cell lung cancer: from molecular mechanisms to clinical application. Clin Cancer Res. 2004, 10: 3237-3248. 10.1158/1078-0432.CCR-03-0503.CrossRefPubMed
2.
go back to reference Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001, 98: 13784-13789. 10.1073/pnas.241500798.CrossRefPubMedPubMedCentral Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001, 98: 13784-13789. 10.1073/pnas.241500798.CrossRefPubMedPubMedCentral
3.
go back to reference Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001, 98: 13790-13795. 10.1073/pnas.191502998.CrossRefPubMedPubMedCentral Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001, 98: 13790-13795. 10.1073/pnas.191502998.CrossRefPubMedPubMedCentral
4.
go back to reference Bombi JA, Martinez A, Ramirez J, Grau JJ, Nadal A, Fernandez PL, Palacin A, Cardesa A: Ultrastructural and molecular heterogeneity in non-small cell lung carcinomas: study of 110 cases and review of the literature. Ultrastruct Pathol. 2002, 26: 211-218. 10.1080/01913120290076892.CrossRefPubMed Bombi JA, Martinez A, Ramirez J, Grau JJ, Nadal A, Fernandez PL, Palacin A, Cardesa A: Ultrastructural and molecular heterogeneity in non-small cell lung carcinomas: study of 110 cases and review of the literature. Ultrastruct Pathol. 2002, 26: 211-218. 10.1080/01913120290076892.CrossRefPubMed
5.
go back to reference Felding-Habermann B: Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis. 2003, 20: 203-213. 10.1023/A:1022983000355.CrossRefPubMed Felding-Habermann B: Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis. 2003, 20: 203-213. 10.1023/A:1022983000355.CrossRefPubMed
6.
go back to reference Friedl P, Wolf K: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003, 3: 362-374. 10.1038/nrc1075.CrossRefPubMed Friedl P, Wolf K: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003, 3: 362-374. 10.1038/nrc1075.CrossRefPubMed
7.
go back to reference Noel AGC, Bajou K, Devy L, Kebers F, Lewalle JM, Maquoj E, Munaut C, Remacle A, Foidart JM: Emerging roles for proteinases in cancer. Invasion Metastasis. 1997, 17: 221-239.PubMed Noel AGC, Bajou K, Devy L, Kebers F, Lewalle JM, Maquoj E, Munaut C, Remacle A, Foidart JM: Emerging roles for proteinases in cancer. Invasion Metastasis. 1997, 17: 221-239.PubMed
8.
go back to reference Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM: Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem. 2003, 278: 11465-11470. 10.1074/jbc.M210945200.CrossRefPubMed Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM: Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem. 2003, 278: 11465-11470. 10.1074/jbc.M210945200.CrossRefPubMed
9.
go back to reference Zicha D, Dunn G, Jones G: Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol. 1997, 75: 449-457.PubMed Zicha D, Dunn G, Jones G: Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol. 1997, 75: 449-457.PubMed
10.
go back to reference Kohn EC, Francis EA, Liotta LA, Schiffmann E: Heterogeneity of the motility responses in malignant tumor cells: a biological basis for the diversity and homing of metastatic cells. Int J Cancer. 1990, 46: 287-292.CrossRefPubMed Kohn EC, Francis EA, Liotta LA, Schiffmann E: Heterogeneity of the motility responses in malignant tumor cells: a biological basis for the diversity and homing of metastatic cells. Int J Cancer. 1990, 46: 287-292.CrossRefPubMed
11.
go back to reference Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, Schiffmann E: Tumor cell autocrine motility factor. Proc Natl Acad Sci USA. 1996, 83: 3302-3306. 10.1073/pnas.83.10.3302.CrossRef Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, Schiffmann E: Tumor cell autocrine motility factor. Proc Natl Acad Sci USA. 1996, 83: 3302-3306. 10.1073/pnas.83.10.3302.CrossRef
12.
go back to reference Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A: Involvement of chemokine receptors in breast cancer metastasis. Nature. 2004, 410: 50-56. 10.1038/35065016.CrossRef Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A: Involvement of chemokine receptors in breast cancer metastasis. Nature. 2004, 410: 50-56. 10.1038/35065016.CrossRef
13.
go back to reference Bailly M, Condeelis JS, Segall JE: Chemoattractant-induced lamellipod extension. Microsc Res Tec. 1998, 43: 433-443. 10.1002/(SICI)1097-0029(19981201)43:5<433::AID-JEMT9>3.0.CO;2-2.CrossRef Bailly M, Condeelis JS, Segall JE: Chemoattractant-induced lamellipod extension. Microsc Res Tec. 1998, 43: 433-443. 10.1002/(SICI)1097-0029(19981201)43:5<433::AID-JEMT9>3.0.CO;2-2.CrossRef
14.
go back to reference DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE: Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci. 2002, 115: 4649-4660. 10.1242/jcs.00147.CrossRefPubMed DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE: Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci. 2002, 115: 4649-4660. 10.1242/jcs.00147.CrossRefPubMed
16.
go back to reference Burridge K, Fath K, Kelly T, Nuckolls G, Turner C: Focal adhesions: transmembrane junctions between the extracellular matrix and cytoskeleton. Annu Rev Cell Biol. 1988, 4: 487-525. 10.1146/annurev.cb.04.110188.002415.CrossRefPubMed Burridge K, Fath K, Kelly T, Nuckolls G, Turner C: Focal adhesions: transmembrane junctions between the extracellular matrix and cytoskeleton. Annu Rev Cell Biol. 1988, 4: 487-525. 10.1146/annurev.cb.04.110188.002415.CrossRefPubMed
17.
go back to reference Condeelis J, Segall J: Intravital Imaging of Cell Movement in Tumors. Nat Rev Cancer. 2003, 3: 921-930. 10.1038/nrc1231.CrossRefPubMed Condeelis J, Segall J: Intravital Imaging of Cell Movement in Tumors. Nat Rev Cancer. 2003, 3: 921-930. 10.1038/nrc1231.CrossRefPubMed
18.
go back to reference Friedl P, Hegerfeldt Y, Tusch M: Collective cell migration in morphogenesis and cancer. Int J Dev Biol. 2004, 48: 441-449. 10.1387/ijdb.041821pf.CrossRefPubMed Friedl P, Hegerfeldt Y, Tusch M: Collective cell migration in morphogenesis and cancer. Int J Dev Biol. 2004, 48: 441-449. 10.1387/ijdb.041821pf.CrossRefPubMed
19.
go back to reference Regen CM, Horwitz AF: Dynamics of beta1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol. 1992, 119: 1347-1359. 10.1083/jcb.119.5.1347.CrossRefPubMed Regen CM, Horwitz AF: Dynamics of beta1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol. 1992, 119: 1347-1359. 10.1083/jcb.119.5.1347.CrossRefPubMed
20.
go back to reference Lu J, Xiao Y, Baudhuin LM, Hong G, Xy Yan: Role of ether-linked lysophosphatidic acids in ovarian cancer cells. J Lipid Res. 2002, 43: 463-475.PubMed Lu J, Xiao Y, Baudhuin LM, Hong G, Xy Yan: Role of ether-linked lysophosphatidic acids in ovarian cancer cells. J Lipid Res. 2002, 43: 463-475.PubMed
21.
go back to reference Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS: Cofilin Promotes Actin Polymerization and Defines the Direction of Cell Motility. Science. 2004, 304: 743-746. 10.1126/science.1094561.CrossRefPubMed Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS: Cofilin Promotes Actin Polymerization and Defines the Direction of Cell Motility. Science. 2004, 304: 743-746. 10.1126/science.1094561.CrossRefPubMed
22.
go back to reference Mouneimme G, Soon L, DesMarais V, Sidani M, Song Xiaoyan, Yip Shu-Chin, Ghosh M, Eddy R, Backer JM, Condeelis J: Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol. 2004, 166: 1-12. Mouneimme G, Soon L, DesMarais V, Sidani M, Song Xiaoyan, Yip Shu-Chin, Ghosh M, Eddy R, Backer JM, Condeelis J: Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol. 2004, 166: 1-12.
23.
go back to reference Bottomley MJ, Salim K, Panayotou G: Phospholipid-binding protein domains. Biochim Biophys Acta. 1998, 1436: 165-183.CrossRefPubMed Bottomley MJ, Salim K, Panayotou G: Phospholipid-binding protein domains. Biochim Biophys Acta. 1998, 1436: 165-183.CrossRefPubMed
24.
go back to reference Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L: A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994, 367: 40-46. 10.1038/367040a0.CrossRefPubMed Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L: A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994, 367: 40-46. 10.1038/367040a0.CrossRefPubMed
25.
go back to reference Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG: A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995, 375: 338-340. 10.1038/375338a0.CrossRefPubMed Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG: A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995, 375: 338-340. 10.1038/375338a0.CrossRefPubMed
26.
go back to reference Nobes CD, Hall A: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999, 144: 1235-1244. 10.1083/jcb.144.6.1235.CrossRefPubMedPubMedCentral Nobes CD, Hall A: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999, 144: 1235-1244. 10.1083/jcb.144.6.1235.CrossRefPubMedPubMedCentral
27.
go back to reference Suetsugu S, Miki H, Takenawa T: Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell Motil Cytoskeleton. 2002, 51: 113-122. 10.1002/cm.10020.CrossRefPubMed Suetsugu S, Miki H, Takenawa T: Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell Motil Cytoskeleton. 2002, 51: 113-122. 10.1002/cm.10020.CrossRefPubMed
28.
go back to reference Elson EL, Felder SF, Jay PY, Kolodney MS, Pasternak C: Forces in cell locomotion. Biochem Soc Symp. 1999, 65: 299-314.PubMed Elson EL, Felder SF, Jay PY, Kolodney MS, Pasternak C: Forces in cell locomotion. Biochem Soc Symp. 1999, 65: 299-314.PubMed
29.
go back to reference Bailly M, Condeelis J: Cell motility: insights from the backstage. Nat Cell Biol. 2002, 4: 292-294. 10.1038/ncb1202-e292.CrossRef Bailly M, Condeelis J: Cell motility: insights from the backstage. Nat Cell Biol. 2002, 4: 292-294. 10.1038/ncb1202-e292.CrossRef
30.
go back to reference Irazoqui JE, Gladfelter AS, Lew DJ: Scaffold-mediated symmetry breaking by Cdc42. Nat Cell Biol. 2003, 5: 1062-1070. 10.1038/ncb1068.CrossRefPubMed Irazoqui JE, Gladfelter AS, Lew DJ: Scaffold-mediated symmetry breaking by Cdc42. Nat Cell Biol. 2003, 5: 1062-1070. 10.1038/ncb1068.CrossRefPubMed
31.
go back to reference Pawson T, Scott JD: Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997, 278: 2075-2080. 10.1126/science.278.5346.2075.CrossRefPubMed Pawson T, Scott JD: Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997, 278: 2075-2080. 10.1126/science.278.5346.2075.CrossRefPubMed
32.
go back to reference Rogge L, Bianchi E, Biffi M, Bono E, Chang SY, Alexander H, Santini C, Ferrari G, Sinigaglia L, Seiler M, Neeb M, Mous J, Sinigaglia F, Certa U: Transcript imaging of the development of human T helper cells using oligonucleotide arrays. Nat Genet. 2000, 25: 96-101. 10.1038/75671.CrossRefPubMed Rogge L, Bianchi E, Biffi M, Bono E, Chang SY, Alexander H, Santini C, Ferrari G, Sinigaglia L, Seiler M, Neeb M, Mous J, Sinigaglia F, Certa U: Transcript imaging of the development of human T helper cells using oligonucleotide arrays. Nat Genet. 2000, 25: 96-101. 10.1038/75671.CrossRefPubMed
33.
go back to reference Tang P, Cheng TP, Agnello D, Wu CY, Hissong BD, Watford WT, Ahn HJ, Galon J, Moss J, Vaughan M, O'Shea JJ, Gadina M: Cybr, a cytokine-inducible protein that binds cytohesin-1 and regulates its activity. Proc Natl Acad Sci USA. 2002, 99: 2625-2629. 10.1073/pnas.052712999.CrossRefPubMedPubMedCentral Tang P, Cheng TP, Agnello D, Wu CY, Hissong BD, Watford WT, Ahn HJ, Galon J, Moss J, Vaughan M, O'Shea JJ, Gadina M: Cybr, a cytokine-inducible protein that binds cytohesin-1 and regulates its activity. Proc Natl Acad Sci USA. 2002, 99: 2625-2629. 10.1073/pnas.052712999.CrossRefPubMedPubMedCentral
35.
go back to reference Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, Nakajima Y, Nakanishi S: Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci. 2002, 22: 1280-1289.PubMed Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, Nakajima Y, Nakanishi S: Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci. 2002, 22: 1280-1289.PubMed
36.
go back to reference Soon L, Mouneimne G, Segall J, Wyckoff J, Condeelis J: Description and characterization of a chamber for viewing and quantifying cancer cell chemotaxis. Cell Motil Cytoskeleton. 2005, 62 (1): 27-34. 10.1002/cm.20082.CrossRefPubMed Soon L, Mouneimne G, Segall J, Wyckoff J, Condeelis J: Description and characterization of a chamber for viewing and quantifying cancer cell chemotaxis. Cell Motil Cytoskeleton. 2005, 62 (1): 27-34. 10.1002/cm.20082.CrossRefPubMed
Metadata
Title
Rapid chemokinetic movement and the invasive potential of lung cancer cells; a functional molecular study
Authors
Sandra YY Fok
Jeffrey S Rubin
Fiona Pixley
John Condeelis
Filip Braet
Lilian L Soon
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2006
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-6-151

Other articles of this Issue 1/2006

BMC Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine