Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2010

Open Access 01-12-2010 | Research

Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

Authors: Ling Gu, Chenyan Zhou, Huajun Liu, Ju Gao, Qiang Li, Dezhi Mu, Zhigui Ma

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2010

Login to get access

Abstract

Background

Glucocorticoid (GC) resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL). In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex) treatment.

Methods

Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. Fluorescence-activated cell sorting (FACS) analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR), the cell cycle regulatory proteins, and apoptosis associated proteins.

Results

10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK) inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR) expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1.

Conclusion

Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting new therapeutic approach for GC resistant T-ALL patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Greenstein S, Ghias K, Krett NL, Rosen ST: Mechanism of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res. 2002, 8: 1681-1694. Greenstein S, Ghias K, Krett NL, Rosen ST: Mechanism of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res. 2002, 8: 1681-1694.
2.
go back to reference Schrappe M: Evolution of BFM trials for childhood ALL. Ann Hematol. 2004, 83 (suppl 1): S121-S123. Schrappe M: Evolution of BFM trials for childhood ALL. Ann Hematol. 2004, 83 (suppl 1): S121-S123.
3.
go back to reference Marino S, Verzegnassi F, Tamaro P, Stocco G, Bartoli F, Decorti G, Rabusin M: Response to glucocorticoids and toxicity in childhood acute lymphoblastic leukemia: role of polymorphisms of genes involved in glucocorticoid response. Pediatr Blood Cancer. 2009, 53: 984-991. 10.1002/pbc.22163.CrossRef Marino S, Verzegnassi F, Tamaro P, Stocco G, Bartoli F, Decorti G, Rabusin M: Response to glucocorticoids and toxicity in childhood acute lymphoblastic leukemia: role of polymorphisms of genes involved in glucocorticoid response. Pediatr Blood Cancer. 2009, 53: 984-991. 10.1002/pbc.22163.CrossRef
4.
go back to reference Kaspers GJ, Pieters R, Klumper E, De Waal FC, Veerman AJ: Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma. 1994, 13: 187-201. 10.3109/10428199409056282.CrossRef Kaspers GJ, Pieters R, Klumper E, De Waal FC, Veerman AJ: Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma. 1994, 13: 187-201. 10.3109/10428199409056282.CrossRef
5.
go back to reference van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG, Burger NB, Passier M, van Lieshout EM, Kamps WA, Veerman AJ, van Noesel MM, Pieters R: Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008, 22: 124-131. 10.1038/sj.leu.2404957.CrossRef van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG, Burger NB, Passier M, van Lieshout EM, Kamps WA, Veerman AJ, van Noesel MM, Pieters R: Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008, 22: 124-131. 10.1038/sj.leu.2404957.CrossRef
6.
go back to reference Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H, Baruchel A, Toribio ML, Sigaux F: HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005, 106: 274-286. 10.1182/blood-2004-10-3900.CrossRef Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H, Baruchel A, Toribio ML, Sigaux F: HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005, 106: 274-286. 10.1182/blood-2004-10-3900.CrossRef
7.
go back to reference Lewis-Tuffin LJ, Cidlowski JA: The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci. 2006, 1069: 1-9. 10.1196/annals.1351.001.CrossRef Lewis-Tuffin LJ, Cidlowski JA: The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci. 2006, 1069: 1-9. 10.1196/annals.1351.001.CrossRef
8.
go back to reference Teachey DT, Grupp SA, Brown VI: Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Hematol. 2009, 145: 569-580. 10.1111/j.1365-2141.2009.07657.x.CrossRef Teachey DT, Grupp SA, Brown VI: Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Hematol. 2009, 145: 569-580. 10.1111/j.1365-2141.2009.07657.x.CrossRef
9.
go back to reference Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M, Gera J, Lichtenstein A: Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res. 2006, 66: 2305-2313. 10.1158/0008-5472.CAN-05-2447.CrossRef Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M, Gera J, Lichtenstein A: Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res. 2006, 66: 2305-2313. 10.1158/0008-5472.CAN-05-2447.CrossRef
10.
go back to reference Jundt F, Raetzel N, Müller C, Calkhoven CF, Kley K, Mathas S, Lietz A, Leutz A, Dörken B: A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein {beta} and NF-{kappa}B activity in Hodgkin and anaplastic large cell lymphomas. Blood. 2005, 106: 1801-1807. 10.1182/blood-2004-11-4513.CrossRef Jundt F, Raetzel N, Müller C, Calkhoven CF, Kley K, Mathas S, Lietz A, Leutz A, Dörken B: A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein {beta} and NF-{kappa}B activity in Hodgkin and anaplastic large cell lymphomas. Blood. 2005, 106: 1801-1807. 10.1182/blood-2004-11-4513.CrossRef
11.
go back to reference Strömberg T, Dimberg A, Hammarberg A, Carlson K, Osterborg A, Nilsson K, Jernberg-Wiklund H: Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004, 103: 3138-3147. 10.1182/blood-2003-05-1543.CrossRef Strömberg T, Dimberg A, Hammarberg A, Carlson K, Osterborg A, Nilsson K, Jernberg-Wiklund H: Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood. 2004, 103: 3138-3147. 10.1182/blood-2003-05-1543.CrossRef
12.
go back to reference Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, Opferman JT, Sallan SE, den Boer ML, Pieters R, Golub TR, Armstrong SA: Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006, 10: 331-342. 10.1016/j.ccr.2006.09.006.CrossRef Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, Opferman JT, Sallan SE, den Boer ML, Pieters R, Golub TR, Armstrong SA: Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006, 10: 331-342. 10.1016/j.ccr.2006.09.006.CrossRef
13.
go back to reference Gu L, Gao J, Li Q, Zhu YP, Jia CS, Fu RY, Chen Y, Liao QK, Ma Z: Rapamycin reverses NPM-ALK induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis. Leukemia. 2008, 2: 2091-2096. 10.1038/leu.2008.204.CrossRef Gu L, Gao J, Li Q, Zhu YP, Jia CS, Fu RY, Chen Y, Liao QK, Ma Z: Rapamycin reverses NPM-ALK induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis. Leukemia. 2008, 2: 2091-2096. 10.1038/leu.2008.204.CrossRef
14.
go back to reference Vezina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975, 28: 721-726.CrossRef Vezina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975, 28: 721-726.CrossRef
15.
go back to reference Gibbons JJ, Abraham RT, YU K: Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol. 2009, 36 (suppl 3): S3-S17. 10.1053/j.seminoncol.2009.10.011.CrossRef Gibbons JJ, Abraham RT, YU K: Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol. 2009, 36 (suppl 3): S3-S17. 10.1053/j.seminoncol.2009.10.011.CrossRef
16.
go back to reference Meric-Bernstam F, Gonzalez-Angulo AM: Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009, 17: 2278-2287. 10.1200/JCO.2008.20.0766.CrossRef Meric-Bernstam F, Gonzalez-Angulo AM: Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009, 17: 2278-2287. 10.1200/JCO.2008.20.0766.CrossRef
17.
go back to reference Costa LJ: Aspects of mTOR biology and the use of mTOR inhibitors in non-Hodgkin's lymphoma. Cancer Treat Rev. 2007, 33: 78-84. 10.1016/j.ctrv.2006.10.004.CrossRef Costa LJ: Aspects of mTOR biology and the use of mTOR inhibitors in non-Hodgkin's lymphoma. Cancer Treat Rev. 2007, 33: 78-84. 10.1016/j.ctrv.2006.10.004.CrossRef
18.
go back to reference Vignot S, Faivre S, Aguirre D, Raymond E: mTOR-targeted therapy of cancer with Rapamycin derivatives. Ann Onc. 2005, 16: 525-537. 10.1093/annonc/mdi113.CrossRef Vignot S, Faivre S, Aguirre D, Raymond E: mTOR-targeted therapy of cancer with Rapamycin derivatives. Ann Onc. 2005, 16: 525-537. 10.1093/annonc/mdi113.CrossRef
19.
go back to reference Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18: 1926-1945. 10.1101/gad.1212704.CrossRef Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18: 1926-1945. 10.1101/gad.1212704.CrossRef
20.
go back to reference Guertin DA, Sabatini DM: Defining the Role of mTOR in Cancer. Cancer cell. 2007, 12: 9-22. 10.1016/j.ccr.2007.05.008.CrossRef Guertin DA, Sabatini DM: Defining the Role of mTOR in Cancer. Cancer cell. 2007, 12: 9-22. 10.1016/j.ccr.2007.05.008.CrossRef
21.
go back to reference Altman JK, Platanias LC: Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Current Opin Hematol. 2008, 15: 88-94. 10.1097/MOH.0b013e3282f3deaa.CrossRef Altman JK, Platanias LC: Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Current Opin Hematol. 2008, 15: 88-94. 10.1097/MOH.0b013e3282f3deaa.CrossRef
22.
go back to reference Shah MA, Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 2001, 7: 2168-2181. Shah MA, Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 2001, 7: 2168-2181.
23.
go back to reference Shapiro GI: Preclinical and clinical development of the cyclindependent kinase inhibitor flavopiridol. Clin Cancer Res. 2004, 10 (12pt2): 4270s-4275s. 10.1158/1078-0432.CCR-040020.CrossRef Shapiro GI: Preclinical and clinical development of the cyclindependent kinase inhibitor flavopiridol. Clin Cancer Res. 2004, 10 (12pt2): 4270s-4275s. 10.1158/1078-0432.CCR-040020.CrossRef
24.
go back to reference Tissing WJ, Meijerink JP, Brinkhof B, Broekhuis MJ, Menezes RX, den Boer ML, Pieters R: Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood. 2006, 108: 1045-1049. 10.1182/blood-2006-01-0261.CrossRef Tissing WJ, Meijerink JP, Brinkhof B, Broekhuis MJ, Menezes RX, den Boer ML, Pieters R: Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood. 2006, 108: 1045-1049. 10.1182/blood-2006-01-0261.CrossRef
25.
go back to reference Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, Ludwig WD, Ritter J, Harbott J, Mann G, Klingebiel T, Zintl F, Niemeyer C, Kremens B, Niggli F, Niethammer D, Welte K, Stanulla M, Odenwald E, Riehm H, Schrappe M: Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010, 24: 265-284. 10.1038/leu.2009.257.CrossRef Möricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, Ludwig WD, Ritter J, Harbott J, Mann G, Klingebiel T, Zintl F, Niemeyer C, Kremens B, Niggli F, Niethammer D, Welte K, Stanulla M, Odenwald E, Riehm H, Schrappe M: Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010, 24: 265-284. 10.1038/leu.2009.257.CrossRef
26.
go back to reference Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret FX, Rassidakis GZ: Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic large cell lymphoma kinase-positive anaplatic large cell lymphoma. Cancer Res. 2006, 66: 6589-6597. 10.1158/0008-5472.CAN-05-3018.CrossRef Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret FX, Rassidakis GZ: Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic large cell lymphoma kinase-positive anaplatic large cell lymphoma. Cancer Res. 2006, 66: 6589-6597. 10.1158/0008-5472.CAN-05-3018.CrossRef
27.
go back to reference Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ: Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol. 2006, 169: 2171-2180. 10.2353/ajpath.2006.051078.CrossRef Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ: Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol. 2006, 169: 2171-2180. 10.2353/ajpath.2006.051078.CrossRef
28.
go back to reference Riml S, Schmidt S, Ausserlechner MJ, Geley S, Kofler R: Glucocorticoid receptor heterozygosity combined with lack of receptor auto-induction causes glucocorticoid resistance in Jurkat acute lymphoblastic leukemia cells. Cell Death Differ. 2004, 11 (Suppl1): S65-S72. 10.1038/sj.cdd.4401413.CrossRef Riml S, Schmidt S, Ausserlechner MJ, Geley S, Kofler R: Glucocorticoid receptor heterozygosity combined with lack of receptor auto-induction causes glucocorticoid resistance in Jurkat acute lymphoblastic leukemia cells. Cell Death Differ. 2004, 11 (Suppl1): S65-S72. 10.1038/sj.cdd.4401413.CrossRef
29.
go back to reference Almawi WY, Melemedjian OK, Jaoude MM: On the link between Bcl-2 family proteins and glucocorticoid-induced apoptosis. J Leukoc Biol. 2004, 76: 7-14. 10.1189/jlb.0903450.CrossRef Almawi WY, Melemedjian OK, Jaoude MM: On the link between Bcl-2 family proteins and glucocorticoid-induced apoptosis. J Leukoc Biol. 2004, 76: 7-14. 10.1189/jlb.0903450.CrossRef
Metadata
Title
Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis
Authors
Ling Gu
Chenyan Zhou
Huajun Liu
Ju Gao
Qiang Li
Dezhi Mu
Zhigui Ma
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2010
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-29-150

Other articles of this Issue 1/2010

Journal of Experimental & Clinical Cancer Research 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine