Skip to main content
Top
Published in: Tumor Biology 6/2016

01-06-2016 | Review

Rap2B GTPase: structure, functions, and regulation

Authors: Zhesi Zhu, Jiehui Di, Zheng Lu, Keyu Gao, Junnian Zheng

Published in: Tumor Biology | Issue 6/2016

Login to get access

Abstract

Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Literature
2.
go back to reference Wittchen ES, van Buul JD, Burridge K, Worthylake RA. Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration. Curr Opin Hematol. 2005;12:14–21.PubMedCrossRef Wittchen ES, van Buul JD, Burridge K, Worthylake RA. Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration. Curr Opin Hematol. 2005;12:14–21.PubMedCrossRef
3.
go back to reference Sayyah J, Bartakova A, Nogal N, Quilliam LA, Stupack DG, Brown JH. The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem. 2014;289:17689–98.PubMedPubMedCentralCrossRef Sayyah J, Bartakova A, Nogal N, Quilliam LA, Stupack DG, Brown JH. The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem. 2014;289:17689–98.PubMedPubMedCentralCrossRef
4.
go back to reference Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL, de Gunzburg J. Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. J Biol Chem. 1999;274:8737–45.PubMedCrossRef Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL, de Gunzburg J. Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. J Biol Chem. 1999;274:8737–45.PubMedCrossRef
5.
go back to reference Huang H, Di J, Qu D, Gao Z, Zhang Y, Zheng J. Role of Rap2 and its downstream effectors in tumorigenesis. Anticancer Agents Med Chem. 2015;15:1269–76.PubMedCrossRef Huang H, Di J, Qu D, Gao Z, Zhang Y, Zheng J. Role of Rap2 and its downstream effectors in tumorigenesis. Anticancer Agents Med Chem. 2015;15:1269–76.PubMedCrossRef
6.
go back to reference Bigler D, Gioeli D, Conaway MR, Weber MJ, Theodorescu D. Rap2 regulates androgen sensitivity in human prostate cancer cells. Prostate. 2007;67:1590–9.PubMedCrossRef Bigler D, Gioeli D, Conaway MR, Weber MJ, Theodorescu D. Rap2 regulates androgen sensitivity in human prostate cancer cells. Prostate. 2007;67:1590–9.PubMedCrossRef
8.
go back to reference Paganini S, Guidetti GF, Catricala S, Trionfini P, Panelli S, Balduini C, et al. Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie. 2006;88:285–95.PubMedCrossRef Paganini S, Guidetti GF, Catricala S, Trionfini P, Panelli S, Balduini C, et al. Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie. 2006;88:285–95.PubMedCrossRef
9.
go back to reference Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene. 1988;3:201–4.PubMed Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene. 1988;3:201–4.PubMed
10.
go back to reference Farrell FX, Ohmstede CA, Reep BR, Lapetina EG. cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res. 1990;18:4281.PubMedPubMedCentralCrossRef Farrell FX, Ohmstede CA, Reep BR, Lapetina EG. cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res. 1990;18:4281.PubMedPubMedCentralCrossRef
11.
go back to reference Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal. 2015;27:1198–207.PubMedCrossRef Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal. 2015;27:1198–207.PubMedCrossRef
12.
go back to reference Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, et al. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle. 2013;12:1279–91.PubMedPubMedCentralCrossRef Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, et al. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle. 2013;12:1279–91.PubMedPubMedCentralCrossRef
13.
go back to reference Tang J, Di J, Cao H, Bai J, Zheng J. p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett. 2015;363:101–7.PubMedCrossRef Tang J, Di J, Cao H, Bai J, Zheng J. p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett. 2015;363:101–7.PubMedCrossRef
14.
go back to reference Prabakaran I, Grau JR, Lewis R, Fraker DL, Guvakova MA. Rap2A is upregulated in invasive cells dissected from follicular thyroid cancer. J Thyroid Res. 2011;2011:979840.PubMedPubMedCentralCrossRef Prabakaran I, Grau JR, Lewis R, Fraker DL, Guvakova MA. Rap2A is upregulated in invasive cells dissected from follicular thyroid cancer. J Thyroid Res. 2011;2011:979840.PubMedPubMedCentralCrossRef
15.
go back to reference Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, et al. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 2007;56:307–17.PubMedCrossRef Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, et al. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 2007;56:307–17.PubMedCrossRef
16.
go back to reference Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y, et al. Rap2B promotes migration and invasion of human suprarenal epithelioma. Tumour Biol. 2014;35:9387–94.PubMedPubMedCentralCrossRef Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y, et al. Rap2B promotes migration and invasion of human suprarenal epithelioma. Tumour Biol. 2014;35:9387–94.PubMedPubMedCentralCrossRef
17.
go back to reference Farrell FX, Yamamoto K, Lapetina EG. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem J. 1993;289:349–55.PubMedPubMedCentralCrossRef Farrell FX, Yamamoto K, Lapetina EG. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem J. 1993;289:349–55.PubMedPubMedCentralCrossRef
18.
go back to reference Canobbio I, Trionfini P, Guidetti GF, Balduini C, Torti M. Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal. 2008;20:1662–70.PubMedCrossRef Canobbio I, Trionfini P, Guidetti GF, Balduini C, Torti M. Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal. 2008;20:1662–70.PubMedCrossRef
19.
go back to reference Maridonneau-Parini I, de Gunzburg J. Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem. 1992;267:6396–402.PubMed Maridonneau-Parini I, de Gunzburg J. Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem. 1992;267:6396–402.PubMed
20.
go back to reference Zhang Q, Chen J, Wu W, Yuan J, Cheng S, Wu Y. Expression of RAP2B in human lung cancer. Carcinogenesis Teratogenesis Mutagenesis. 2007;19:466–8. Zhang Q, Chen J, Wu W, Yuan J, Cheng S, Wu Y. Expression of RAP2B in human lung cancer. Carcinogenesis Teratogenesis Mutagenesis. 2007;19:466–8.
21.
go back to reference Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, et al. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep. 2015;5:12363.PubMedPubMedCentralCrossRef Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, et al. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep. 2015;5:12363.PubMedPubMedCentralCrossRef
22.
go back to reference Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei W, et al. Identification and functional analysis of a novel candidate oncogene RAP2B in lung cancer. Zhongguo Fei Ai Za Zhi. 2009;12:273–6.PubMed Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei W, et al. Identification and functional analysis of a novel candidate oncogene RAP2B in lung cancer. Zhongguo Fei Ai Za Zhi. 2009;12:273–6.PubMed
23.
go back to reference Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J, et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Cancer. 2010;9:168–76.PubMedCrossRef Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J, et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Cancer. 2010;9:168–76.PubMedCrossRef
25.
go back to reference Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics. 2015;7:475–86.PubMedCrossRef Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics. 2015;7:475–86.PubMedCrossRef
26.
go back to reference Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, Walter J. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2006;2:e26.PubMedPubMedCentralCrossRef Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, Walter J. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2006;2:e26.PubMedPubMedCentralCrossRef
27.
go back to reference Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010;29:3650–64.PubMedCrossRef Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010;29:3650–64.PubMedCrossRef
28.
29.
go back to reference Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.PubMedPubMedCentralCrossRef Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang S, Zhou M, Jiang G, Gong C, Cui D, Luo L, et al. Expression and DNA methylation status of the Rap2b gene in human bronchial epithelial cells treated by cigarette smoke condensate. Inhal Toxicol. 2015;27:502–9.PubMedCrossRef Zhang S, Zhou M, Jiang G, Gong C, Cui D, Luo L, et al. Expression and DNA methylation status of the Rap2b gene in human bronchial epithelial cells treated by cigarette smoke condensate. Inhal Toxicol. 2015;27:502–9.PubMedCrossRef
31.
32.
go back to reference Mollinedo F, Perez-Sala D, Gajate C, Jimenez B, Rodriguez P, Lacal JC. Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Lett. 1993;326:209–14.PubMedCrossRef Mollinedo F, Perez-Sala D, Gajate C, Jimenez B, Rodriguez P, Lacal JC. Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Lett. 1993;326:209–14.PubMedCrossRef
33.
go back to reference Greco F, Ciana A, Pietra D, Balduini C, Minetti G, Torti M. Rap2, but not Rap1 GTPase is expressed in human red blood cells and is involved in vesiculation. Biochim Biophys Acta. 2006;1763:330–5.PubMedCrossRef Greco F, Ciana A, Pietra D, Balduini C, Minetti G, Torti M. Rap2, but not Rap1 GTPase is expressed in human red blood cells and is involved in vesiculation. Biochim Biophys Acta. 2006;1763:330–5.PubMedCrossRef
34.
go back to reference Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad Sci U S A. 1994;91:4239–43.PubMedPubMedCentralCrossRef Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad Sci U S A. 1994;91:4239–43.PubMedPubMedCentralCrossRef
35.
go back to reference Lippi G, Montagnana M, Danese E, Favaloro EJ, Franchini M. Glycoprotein IIb/IIIa inhibitors: an update on the mechanism of action and use of functional testing methods to assess antiplatelet efficacy. Biomark Med. 2011;5:63–70.PubMedCrossRef Lippi G, Montagnana M, Danese E, Favaloro EJ, Franchini M. Glycoprotein IIb/IIIa inhibitors: an update on the mechanism of action and use of functional testing methods to assess antiplatelet efficacy. Biomark Med. 2011;5:63–70.PubMedCrossRef
36.
go back to reference Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Rap1b and Rap2b translocation to the cytoskeleton by von Willebrand factor involves Fcγii receptor-mediated protein tyrosine phosphorylation. J Biol Chem. 1999;274:13690–7.PubMedCrossRef Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Rap1b and Rap2b translocation to the cytoskeleton by von Willebrand factor involves Fcγii receptor-mediated protein tyrosine phosphorylation. J Biol Chem. 1999;274:13690–7.PubMedCrossRef
38.
go back to reference Selvaraj P, Fifadara N, Nagarajan S, Cimino A, Wang G. Functional regulation of human neutrophil Fc gamma receptors. Immunol Res. 2004;29:219–30.PubMedCrossRef Selvaraj P, Fifadara N, Nagarajan S, Cimino A, Wang G. Functional regulation of human neutrophil Fc gamma receptors. Immunol Res. 2004;29:219–30.PubMedCrossRef
39.
go back to reference Campa MJ, Farrell FX, Lapetina EG, Chang KJ. Microinjection of Rap2b protein or RNA induces rearrangement of pigment granules in Xenopus oocytes. Biochem J. 1993;292(Pt 1):231–6.PubMedPubMedCentralCrossRef Campa MJ, Farrell FX, Lapetina EG, Chang KJ. Microinjection of Rap2b protein or RNA induces rearrangement of pigment granules in Xenopus oocytes. Biochem J. 1993;292(Pt 1):231–6.PubMedPubMedCentralCrossRef
41.
go back to reference De Ferrari GV, Avila ME, Medina MA, Perez-Palma E, Bustos BI, Alarcon MA. Wnt/β-catenin signaling in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2014;13:745–54.PubMedCrossRef De Ferrari GV, Avila ME, Medina MA, Perez-Palma E, Bustos BI, Alarcon MA. Wnt/β-catenin signaling in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2014;13:745–54.PubMedCrossRef
42.
go back to reference He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004;131:1663–77.PubMedCrossRef He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004;131:1663–77.PubMedCrossRef
43.
go back to reference Veeman MT, Axelrod JD, Moon RT. A second canon, functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–77.PubMedCrossRef Veeman MT, Axelrod JD, Moon RT. A second canon, functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–77.PubMedCrossRef
44.
go back to reference Sugimura R, Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res C Embryo Today. 2010;90:243–56.PubMedCrossRef Sugimura R, Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res C Embryo Today. 2010;90:243–56.PubMedCrossRef
45.
go back to reference Marsden M, DeSimone DW. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development. 2001;128:3635–47.PubMed Marsden M, DeSimone DW. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development. 2001;128:3635–47.PubMed
46.
go back to reference McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR. The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem. 2004;279:12009–19.PubMedCrossRef McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR. The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem. 2004;279:12009–19.PubMedCrossRef
48.
go back to reference Mestre MB, Colombo MI. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the alpha-hemolysin autophagic response. PLoS Pathog. 2012;8:e1002664.PubMedPubMedCentralCrossRef Mestre MB, Colombo MI. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the alpha-hemolysin autophagic response. PLoS Pathog. 2012;8:e1002664.PubMedPubMedCentralCrossRef
50.
go back to reference Roscioni SS, Elzinga CR, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:345–57.PubMedCrossRef Roscioni SS, Elzinga CR, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:345–57.PubMedCrossRef
51.
go back to reference Chalmeau J, Monina N, Shin J, Vieu C, Noireaux V. Alpha-hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. Biochim Biophys Acta. 1808;2011:271–8. Chalmeau J, Monina N, Shin J, Vieu C, Noireaux V. Alpha-hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. Biochim Biophys Acta. 1808;2011:271–8.
52.
53.
go back to reference Kobayashi S. Choose delicately and reuse adequately: the newly revealed process of autophagy. Biol Pharm Bull. 2015;38:1098–103.PubMedCrossRef Kobayashi S. Choose delicately and reuse adequately: the newly revealed process of autophagy. Biol Pharm Bull. 2015;38:1098–103.PubMedCrossRef
54.
go back to reference Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30.PubMedPubMedCentralCrossRef Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30.PubMedPubMedCentralCrossRef
55.
go back to reference Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2012;13:7–12. Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2012;13:7–12.
56.
go back to reference Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34:2272–90.PubMedPubMedCentralCrossRef Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34:2272–90.PubMedPubMedCentralCrossRef
57.
go back to reference Mestre MB, Fader CM, Sola C, Colombo MI. Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy. 2010;6:110–25.PubMedCrossRef Mestre MB, Fader CM, Sola C, Colombo MI. Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy. 2010;6:110–25.PubMedCrossRef
58.
59.
go back to reference Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. Biochim Biophys Acta. 2009;1793:1465–77.PubMedCrossRef Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. Biochim Biophys Acta. 2009;1793:1465–77.PubMedCrossRef
60.
go back to reference Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci U S A. 1993;90:7553–7.PubMedPubMedCentralCrossRef Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci U S A. 1993;90:7553–7.PubMedPubMedCentralCrossRef
61.
go back to reference Di J, Huang H, Wang Y, Qu D, Tang J, Cheng Q, et al. p53 target gene Rap2B regulates the cytoskeleton and inhibits cell spreading. J Cancer Res Clin Oncol. 2015;141:1791–8.PubMedCrossRef Di J, Huang H, Wang Y, Qu D, Tang J, Cheng Q, et al. p53 target gene Rap2B regulates the cytoskeleton and inhibits cell spreading. J Cancer Res Clin Oncol. 2015;141:1791–8.PubMedCrossRef
62.
go back to reference Zhang Q, Duan L, Xu H, Yuan J, Wu W, Wu Y, et al. Effects of Rap2b gene on foci formation and wound-healing of NIH3T3 cells. Wei Sheng Yan Jiu. 2010;39:403–6.PubMed Zhang Q, Duan L, Xu H, Yuan J, Wu W, Wu Y, et al. Effects of Rap2b gene on foci formation and wound-healing of NIH3T3 cells. Wei Sheng Yan Jiu. 2010;39:403–6.PubMed
63.
go back to reference Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, et al. Targeted inactivation of Mdm2 ring finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell. 2007;12:355–66.PubMedCrossRef Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, et al. Targeted inactivation of Mdm2 ring finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell. 2007;12:355–66.PubMedCrossRef
64.
go back to reference Di J, Zhang Y, Zheng J. Reactivation of p53 by inhibiting Mdm2 E3 ligase: a novel antitumor approach. Curr Cancer Drug Targets. 2011;11:987–94.PubMedCrossRef Di J, Zhang Y, Zheng J. Reactivation of p53 by inhibiting Mdm2 E3 ligase: a novel antitumor approach. Curr Cancer Drug Targets. 2011;11:987–94.PubMedCrossRef
65.
go back to reference Zhang Q, Xing R, Xu H, Yuan J, Li C, Wu W, et al. Construction of eukaryotic expression vector of rap2b and its effects on pathway of nih3t3 cells. Cancer Res Prevention Treat. 2010;37:640–3. Zhang Q, Xing R, Xu H, Yuan J, Li C, Wu W, et al. Construction of eukaryotic expression vector of rap2b and its effects on pathway of nih3t3 cells. Cancer Res Prevention Treat. 2010;37:640–3.
66.
go back to reference Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002;110:443–55.PubMedCrossRef Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002;110:443–55.PubMedCrossRef
67.
go back to reference Ryu J, Futai K, Feliu M, Weinberg R, Sheng M. Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci. 2008;28:8178–88.PubMedPubMedCentralCrossRef Ryu J, Futai K, Feliu M, Weinberg R, Sheng M. Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci. 2008;28:8178–88.PubMedPubMedCentralCrossRef
68.
go back to reference Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baumgart JP, et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron. 2005;46:905–16.PubMedCrossRef Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baumgart JP, et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron. 2005;46:905–16.PubMedCrossRef
69.
go back to reference Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DT. Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J Neurochem. 2007;100:118–31.PubMedCrossRef Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DT. Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J Neurochem. 2007;100:118–31.PubMedCrossRef
70.
go back to reference Miertzschke M, Stanley P, Bunney TD, Rodrigues-Lima F, Hogg N, Katan M. Characterization of interactions of adapter protein RAPL/Nore1B with RAP GTPases and their role in T cell migration. J Biol Chem. 2007;282:30629–42.PubMedCrossRef Miertzschke M, Stanley P, Bunney TD, Rodrigues-Lima F, Hogg N, Katan M. Characterization of interactions of adapter protein RAPL/Nore1B with RAP GTPases and their role in T cell migration. J Biol Chem. 2007;282:30629–42.PubMedCrossRef
71.
72.
73.
go back to reference Ohba Y, Mochizuki N, Matsuo K, Yamashita S, Nakaya M, Hashimoto Y, et al. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol. 2000;20:6074–83.PubMedPubMedCentralCrossRef Ohba Y, Mochizuki N, Matsuo K, Yamashita S, Nakaya M, Hashimoto Y, et al. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol. 2000;20:6074–83.PubMedPubMedCentralCrossRef
74.
go back to reference Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron. 2001;31:289–303.PubMedCrossRef Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron. 2001;31:289–303.PubMedCrossRef
75.
go back to reference Singh L, Gao Q, Kumar A, Gotoh T, Wazer DE, Band H, et al. The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J Virol. 2003;77:1614–20.PubMedPubMedCentralCrossRef Singh L, Gao Q, Kumar A, Gotoh T, Wazer DE, Band H, et al. The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J Virol. 2003;77:1614–20.PubMedPubMedCentralCrossRef
76.
go back to reference Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci. 2009;100:17–23.PubMedCrossRef Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci. 2009;100:17–23.PubMedCrossRef
77.
go back to reference Christian JL, Olson DJ, Moon RT. Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm. EMBO J. 1992;11:33–41.PubMedPubMedCentral Christian JL, Olson DJ, Moon RT. Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm. EMBO J. 1992;11:33–41.PubMedPubMedCentral
78.
go back to reference Baker JC, Beddington RS, Harland RM. Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 1999;13:3149–59.PubMedPubMedCentralCrossRef Baker JC, Beddington RS, Harland RM. Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 1999;13:3149–59.PubMedPubMedCentralCrossRef
79.
go back to reference Wessely O, Agius E, Oelgeschlager M, Pera EM, De Robertis EM. Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol. 2001;234:161–73.PubMedPubMedCentralCrossRef Wessely O, Agius E, Oelgeschlager M, Pera EM, De Robertis EM. Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol. 2001;234:161–73.PubMedPubMedCentralCrossRef
81.
go back to reference Gloerich M, ten Klooster JP, Vliem MJ, Koorman T, Zwartkruis FJ, Clevers H, et al. Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol. 2012;14:793–801.PubMedCrossRef Gloerich M, ten Klooster JP, Vliem MJ, Koorman T, Zwartkruis FJ, Clevers H, et al. Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol. 2012;14:793–801.PubMedCrossRef
82.
go back to reference Greco F, Sinigaglia F, Balduini C, Torti M. Activation of the small GTPase Rap2B in agonist-stimulated human platelets. J Thromb Haemost. 2004;2:2223–30.PubMedCrossRef Greco F, Sinigaglia F, Balduini C, Torti M. Activation of the small GTPase Rap2B in agonist-stimulated human platelets. J Thromb Haemost. 2004;2:2223–30.PubMedCrossRef
83.
go back to reference Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF. Activation of Rap1B by G(i) family members in platelets. J Biol Chem. 2002;277:23382–90.PubMedCrossRef Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF. Activation of Rap1B by G(i) family members in platelets. J Biol Chem. 2002;277:23382–90.PubMedCrossRef
84.
85.
go back to reference Torti M, Lapetina EG. Structure and function of rap proteins in human platelets. Thromb Haemost. 1994;71:533–43.PubMed Torti M, Lapetina EG. Structure and function of rap proteins in human platelets. Thromb Haemost. 1994;71:533–43.PubMed
86.
go back to reference Keiper M, Stope MB, Szatkowski D, Bohm A, Tysack K, Vom Dorp F, et al. Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem. 2004;279:46497–508.PubMedCrossRef Keiper M, Stope MB, Szatkowski D, Bohm A, Tysack K, Vom Dorp F, et al. Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem. 2004;279:46497–508.PubMedCrossRef
87.
go back to reference Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem. 2003;278:131–8.PubMedCrossRef Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem. 2003;278:131–8.PubMedCrossRef
88.
go back to reference Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem. 2001;276:2752–7.PubMedCrossRef Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem. 2001;276:2752–7.PubMedCrossRef
89.
go back to reference Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001;3:1020–4.PubMedCrossRef Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001;3:1020–4.PubMedCrossRef
90.
go back to reference Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PA, et al. Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem. 2002;277:16805–13.PubMedCrossRef Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PA, et al. Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem. 2002;277:16805–13.PubMedCrossRef
91.
go back to reference Stope MB, Vom Dorp F, Szatkowski D, Bohm A, Keiper M, Nolte J, et al. Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol. 2004;24:4664–76.PubMedPubMedCentralCrossRef Stope MB, Vom Dorp F, Szatkowski D, Bohm A, Keiper M, Nolte J, et al. Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol. 2004;24:4664–76.PubMedPubMedCentralCrossRef
92.
go back to reference Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.PubMedCrossRef Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.PubMedCrossRef
93.
go back to reference Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.PubMedPubMedCentralCrossRef Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.PubMedPubMedCentralCrossRef
94.
go back to reference Jung CH, Kim EM, Park JK, Hwang SG, Moon SK, Kim WJ, et al. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep. 2013;29:2109–13.PubMedPubMedCentral Jung CH, Kim EM, Park JK, Hwang SG, Moon SK, Kim WJ, et al. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep. 2013;29:2109–13.PubMedPubMedCentral
95.
go back to reference Lu CY, Lai SC. Induction of matrix metalloproteinase-2 and -9 via Erk1/2-NF-kappaB pathway in human astroglia infected with Toxoplasma gondii. Acta Trop. 2013;127:14–20.PubMedCrossRef Lu CY, Lai SC. Induction of matrix metalloproteinase-2 and -9 via Erk1/2-NF-kappaB pathway in human astroglia infected with Toxoplasma gondii. Acta Trop. 2013;127:14–20.PubMedCrossRef
96.
go back to reference Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, Choi KM, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res. 2006;66:4991–5.PubMedCrossRef Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, Choi KM, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res. 2006;66:4991–5.PubMedCrossRef
97.
go back to reference Taira K, Umikawa M, Takei K, Myagmar BE, Shinzato M, Machida N, et al. The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem. 2004;279:49488–96.PubMedCrossRef Taira K, Umikawa M, Takei K, Myagmar BE, Shinzato M, Machida N, et al. The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem. 2004;279:49488–96.PubMedCrossRef
98.
go back to reference Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, et al. Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem. 2004;279:15711–4.PubMedCrossRef Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, et al. Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem. 2004;279:15711–4.PubMedCrossRef
99.
go back to reference Myagmar BE, Umikawa M, Asato T, Taira K, Oshiro M, Hino A, et al. PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochem Biophys Res Commun. 2005;329:1046–52.PubMedCrossRef Myagmar BE, Umikawa M, Asato T, Taira K, Oshiro M, Hino A, et al. PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochem Biophys Res Commun. 2005;329:1046–52.PubMedCrossRef
100.
go back to reference Xie X, Liu H, Wang M, Ding F, Xiao H, Hu F, et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumour Biol. 2015;36:5031–8.PubMedCrossRef Xie X, Liu H, Wang M, Ding F, Xiao H, Hu F, et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumour Biol. 2015;36:5031–8.PubMedCrossRef
102.
103.
go back to reference Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398–406.PubMedCrossRef Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398–406.PubMedCrossRef
104.
go back to reference Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.PubMed Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.PubMed
105.
go back to reference Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.PubMedCrossRef Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.PubMedCrossRef
106.
go back to reference Anastas JN, Moon RT. Wnt signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.PubMedCrossRef Anastas JN, Moon RT. Wnt signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.PubMedCrossRef
107.
go back to reference Iacobuzio-Donahue CA, Herman JM. Autophagy, p53, and pancreatic cancer. N Engl J Med. 2014;370:1352–3.PubMedCrossRef Iacobuzio-Donahue CA, Herman JM. Autophagy, p53, and pancreatic cancer. N Engl J Med. 2014;370:1352–3.PubMedCrossRef
Metadata
Title
Rap2B GTPase: structure, functions, and regulation
Authors
Zhesi Zhu
Jiehui Di
Zheng Lu
Keyu Gao
Junnian Zheng
Publication date
01-06-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5033-y

Other articles of this Issue 6/2016

Tumor Biology 6/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine