Skip to main content
Top
Published in: Clinical Pharmacokinetics 4/2014

01-04-2014 | Original Research Article

Randomised, Double-Blind, Placebo-Controlled, Dose-Escalating Phase I Study of QGC001, a Centrally Acting Aminopeptidase A Inhibitor Prodrug

Authors: Fabrice Balavoine, Michel Azizi, Damien Bergerot, Nadia De Mota, Rémi Patouret, Bernard P. Roques, Catherine Llorens-Cortes

Published in: Clinical Pharmacokinetics | Issue 4/2014

Login to get access

Abstract

Background and Objectives

Inhibition of brain aminopeptidase A (APA), which converts angiotensin II into angiotensin III, has emerged as a novel antihypertensive treatment, as demonstrated in several experimental animal models. QGC001 (originally named RB150) is a prodrug of the specific and selective APA inhibitor EC33, and as such it is the prototype of a new class of centrally acting antihypertensive agents. Given by the oral route in hypertensive rats, it enters the brain and generates EC33, which blocks the brain renin–angiotensin system activity and normalises blood pressure. The aim of the present study was to evaluate the safety, pharmacokinetics and pharmacodynamic effects of QGC001 in humans.

Design and Methods

Fifty-six healthy male volunteers were randomly assigned to receive in double-blind and fasted conditions single oral doses of 10, 50, 125, 250, 500, 750, 1,000 and 1,250 mg of QGC001 (n = 6/dose) or placebo (n = 2/dose). We measured plasma and urine concentrations of both QGC001 and EC33 by liquid chromatography–tandem mass spectrometry, plasma renin concentrations (PRC), plasma and free urine aldosterone (PAldo and UAldo), plasma copeptine (PCop), and plasma and urine cortisol (PCort and UCort) concentrations, and supine systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) at various time points.

Results

All doses of QGC001 were clinically and biologically well-tolerated. Peak plasma concentrations (C max) of QGC001 and EC33 increased linearly with the dose, with a median time to reach C max (t max) of 1.5 h for QGC001 and 3.0 h for EC33. The median plasma elimination half-life of QGC001 was 1.6 h consistently throughout doses. Urinary excretion of QGC001 and EC33 was below 2 % of the administered dose. When compared with placebo, QGC001 did not significantly change PRC, PAldo, UAldo, PCop, PCort or UCort. No significant change was observed for supine HR, SBP and DBP in any treatment group.

Conclusion

Single oral administration of QGC001 up to 1,250 mg in healthy volunteers was well-tolerated. Following oral administration, QGC001 is absorbed via the gastrointestinal tract and converted partially into its active metabolite EC33 in plasma. As in animal experiments, in normotensive subjects QGC001 had no effect on the systemic renin–angiotensin–aldosterone parameters and on PCop concentrations, a marker of vasopressin release. In normotensive subjects, a single dose of QCG001 had no effect on SBP, DBP or HR. These data support further evaluation of multiple oral doses of QGC001 in human volunteers and its clinical efficacy in hypertensive patients.
Literature
1.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al., American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013 Jan 1;127(1):e6–e245. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al., American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013 Jan 1;127(1):e6–e245.
2.
go back to reference Wright JW, Harding JW. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev. 1992;17(3):227–62.PubMedCrossRef Wright JW, Harding JW. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev. 1992;17(3):227–62.PubMedCrossRef
3.
go back to reference Basso N, Ruiz P, Kurnjek ML, Cannata MA, Taquini AC. The brain renin-angiotensin system and the development of DOCA-salt hypertension. Clin Exp Hypertens. 1985;7(9):1259–68.CrossRef Basso N, Ruiz P, Kurnjek ML, Cannata MA, Taquini AC. The brain renin-angiotensin system and the development of DOCA-salt hypertension. Clin Exp Hypertens. 1985;7(9):1259–68.CrossRef
4.
go back to reference Ganten D, Hermann K, Bayer C, Unger T, Lang RE. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science. 1983;221(4613):869–71.PubMedCrossRef Ganten D, Hermann K, Bayer C, Unger T, Lang RE. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science. 1983;221(4613):869–71.PubMedCrossRef
5.
go back to reference Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA. 1996;93(21):11968–73.PubMedCentralPubMedCrossRef Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA. 1996;93(21):11968–73.PubMedCentralPubMedCrossRef
6.
go back to reference Chauvel EN, Coric P, Llorens-Cortes C, Wilk S, Roques BP, Fournie-Zaluski MC. Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Med Chem. 1994;37(9):1339–46.PubMedCrossRef Chauvel EN, Coric P, Llorens-Cortes C, Wilk S, Roques BP, Fournie-Zaluski MC. Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Med Chem. 1994;37(9):1339–46.PubMedCrossRef
7.
go back to reference Fournie-Zaluski MC, et al. Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation. J Med Chem. 1992;35(7):1259–66.PubMedCrossRef Fournie-Zaluski MC, et al. Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation. J Med Chem. 1992;35(7):1259–66.PubMedCrossRef
9.
go back to reference Reaux A, Fournie-Zaluski MC, Llorens-Cortes C. Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab. 2001;12(4):157–62.PubMedCrossRef Reaux A, Fournie-Zaluski MC, Llorens-Cortes C. Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab. 2001;12(4):157–62.PubMedCrossRef
10.
go back to reference Fournie-Zaluski MC, Fassot C, Valentin B, Djordjijevic D, Reaux-Le Goazigo A, Corvol P, et al. Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA. 2004;101(20):7775–80.PubMedCentralPubMedCrossRef Fournie-Zaluski MC, Fassot C, Valentin B, Djordjijevic D, Reaux-Le Goazigo A, Corvol P, et al. Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA. 2004;101(20):7775–80.PubMedCentralPubMedCrossRef
11.
go back to reference Rozenfeld R, Iturrioz X, Maigret B, Llorens-Cortes C. Contribution of molecular modeling and site-directed mutagenesis to the identification of two structural residues, Arg-220 and Asp-227, in aminopeptidase A. J Biol Chem. 2002;277(32):29242–52.PubMedCrossRef Rozenfeld R, Iturrioz X, Maigret B, Llorens-Cortes C. Contribution of molecular modeling and site-directed mutagenesis to the identification of two structural residues, Arg-220 and Asp-227, in aminopeptidase A. J Biol Chem. 2002;277(32):29242–52.PubMedCrossRef
12.
go back to reference Fournie-Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R, et al. “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem. 1992;35(13):2473–81.PubMedCrossRef Fournie-Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R, et al. “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem. 1992;35(13):2473–81.PubMedCrossRef
13.
go back to reference Bodineau L, Frugière A, Marc Y, Inguimbert N, Fassot C, Balavoine F, et al. Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension. 2008;51(5):1318–25.PubMedCrossRef Bodineau L, Frugière A, Marc Y, Inguimbert N, Fassot C, Balavoine F, et al. Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension. 2008;51(5):1318–25.PubMedCrossRef
14.
go back to reference Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-Cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension. 2012;60(2):411–8.PubMedCrossRef Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-Cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension. 2012;60(2):411–8.PubMedCrossRef
15.
go back to reference Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol. 2011;95(2):89–103.PubMedCrossRef Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol. 2011;95(2):89–103.PubMedCrossRef
16.
go back to reference Morgenthaler NG, Struck J, Jochberger S, Dünser MW. Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab. 2008;19(2):43–9.PubMedCrossRef Morgenthaler NG, Struck J, Jochberger S, Dünser MW. Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab. 2008;19(2):43–9.PubMedCrossRef
17.
go back to reference Evans WE, Schentag JJ, Jusko WJ. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 1992. Evans WE, Schentag JJ, Jusko WJ. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 1992.
18.
go back to reference Wuerzner G, Azizi M. Renin inhibition with aliskiren. Clin Exp Pharmacol Physiol. 2008;35(4):426–30.PubMedCrossRef Wuerzner G, Azizi M. Renin inhibition with aliskiren. Clin Exp Pharmacol Physiol. 2008;35(4):426–30.PubMedCrossRef
19.
go back to reference Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol. 2002;61(4):729–37. Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol. 2002;61(4):729–37.
20.
go back to reference Azizi M, Bissery A, Bura-Riviere A, Menard J. Dual renin-angiotensin system blockade restores blood pressure-renin dependency in individuals with low renin concentrations. J Hypertens. 2003;21(10):1887–95.PubMedCrossRef Azizi M, Bissery A, Bura-Riviere A, Menard J. Dual renin-angiotensin system blockade restores blood pressure-renin dependency in individuals with low renin concentrations. J Hypertens. 2003;21(10):1887–95.PubMedCrossRef
21.
go back to reference Lachurié ML, Azizi M, Guyene TT, Alhenc-Gelas F, Ménard J. Angiotensin-converting enzyme gene polymorphism has no influence on the circulating renin-angiotensin-aldosterone system or blood pressure in normotensive subjects. Circulation. 1995;91(12):2933–42.PubMedCrossRef Lachurié ML, Azizi M, Guyene TT, Alhenc-Gelas F, Ménard J. Angiotensin-converting enzyme gene polymorphism has no influence on the circulating renin-angiotensin-aldosterone system or blood pressure in normotensive subjects. Circulation. 1995;91(12):2933–42.PubMedCrossRef
22.
go back to reference De Mota N, Iturrioz X, Claperon C, Bodineau L, Fassot C, Roques BP, et al. Human brain aminopeptidase A: biochemical properties and distribution in brain nuclei. J Neurochem. 2008;106(1):416–28.PubMedCrossRef De Mota N, Iturrioz X, Claperon C, Bodineau L, Fassot C, Roques BP, et al. Human brain aminopeptidase A: biochemical properties and distribution in brain nuclei. J Neurochem. 2008;106(1):416–28.PubMedCrossRef
23.
go back to reference Ma TK, Kam KK, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol. 2010;160(6):1273–92.PubMedCentralPubMedCrossRef Ma TK, Kam KK, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol. 2010;160(6):1273–92.PubMedCentralPubMedCrossRef
24.
go back to reference Volpe M, Pontremoli R, Borghi C. Direct renin inhibition: from pharmacological innovation to novel therapeutic opportunities. High Blood Press Cardiovasc Prev. 2011;18(3):93–105.PubMedCrossRef Volpe M, Pontremoli R, Borghi C. Direct renin inhibition: from pharmacological innovation to novel therapeutic opportunities. High Blood Press Cardiovasc Prev. 2011;18(3):93–105.PubMedCrossRef
Metadata
Title
Randomised, Double-Blind, Placebo-Controlled, Dose-Escalating Phase I Study of QGC001, a Centrally Acting Aminopeptidase A Inhibitor Prodrug
Authors
Fabrice Balavoine
Michel Azizi
Damien Bergerot
Nadia De Mota
Rémi Patouret
Bernard P. Roques
Catherine Llorens-Cortes
Publication date
01-04-2014
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 4/2014
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0125-y

Other articles of this Issue 4/2014

Clinical Pharmacokinetics 4/2014 Go to the issue