Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2015 | Research article

Radix puerariae extracts ameliorate paraquat-induced pulmonary fibrosis by attenuating follistatin-like 1 and nuclear factor erythroid 2p45-related factor-2 signalling pathways through downregulation of miRNA-21 expression

Authors: Ming-wei Liu, Rong Liu, Hai-ying Wu, Yi-yun Li, Mei-xian Su, Min-na Dong, Wei Zhang, Chuan-yun Qian

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Puerarin, extracted from Radix puerariae, was reported to ameliorate airway inflammation, lung injury and lung fibrosis induced by paraquat (PQ) in mice. However, effects of Radix puerariae extracts (RPEs) on lung fibrosis or signalling pathways in PQ-induced lung injury have not been well studied. Therefore, the goals of our study were to investigate whether Radix puerariae extracts are antifibrotic in a paraquat (PQ) induced lung fibrosis model in mice and to propose possible mechanisms of action of the RPE effects.

Methods

We used a long-term exposure model of PQ-induced lung fibrosis in mice to evaluate effects of antioxidant-containing RPE. We examined effects of miR-21 on follistatin-like 1 (Fstl 1) pathways and oxidative stress in the lung. Gene expression levels of miR-21, Fstl 1, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), collagen-1 and collagen III were measured by real-time PCR. Protein expression levels of Fstl 1(FSTL1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2p45-related factor-2 (Nrf2), Smad2/3, p38MAPK, nuclear factor-κB 65 (NF-κB65), and matrix metalloproteinase-9 were detected by western blotting. FSTL1 andalpha-smooth muscle actin (α-SMA) in lung tissue were detected by immunohistochemistry. Malondialdehyde, superoxide dismutase (SOD), reduced (GSH) and oxidised (GSSH) glutathione and reactive oxygen species levels, hydroxyproline and total lung collagen were also determined.

Results

Long-term challenge with PQ enhanced miRNA-21 (miR-21), Fstl 1 pathways, oxidative stress and development of fibrotic features in the lungs. RPE reduced features of lung fibrosis by blocking Fstl 1 pathways and oxidative stress through decreased miR-21 expression. This was accompanied by suppression of CTGF, TGF-β1, vascular endothelial growth factor, collagen I, and collagen III. In addition, PQ-induced activation of NF-κB, Nrf2 and α-SMA were enhanced by puerarin. We also found that puerarin increased HO-1, SOD and GSH levels.

Conclusions

These findings demonstrated that RPEs blocked PQ-induced Fstl 1 pathways and oxidative stress by inhibiting miR-21 expression, leading to attenuation of PQ-induced lung fibrosis.
Literature
1.
go back to reference Cristovao AC, Choi DH, Baltazar G, Beal MF, Kim YS. The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal. 2009;11:2105–8.CrossRefPubMedPubMedCentral Cristovao AC, Choi DH, Baltazar G, Beal MF, Kim YS. The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal. 2009;11:2105–8.CrossRefPubMedPubMedCentral
3.
go back to reference Qian J, Ye Y, Lv L, Zhu C, Ye S. FTY720 attenuates paraquat-induced lung injury in mice. Int Immunopharmacol. 2014;21:426–31.CrossRefPubMed Qian J, Ye Y, Lv L, Zhu C, Ye S. FTY720 attenuates paraquat-induced lung injury in mice. Int Immunopharmacol. 2014;21:426–31.CrossRefPubMed
4.
go back to reference Chang X, Shao C, Wu Q, Wu Q, Huang M, Zhou Z. Pyrrolidine dithiocarbamate attenuates paraquat-induced lung injury in rats. Biomed Biotechnol. 2009;61948:7. Chang X, Shao C, Wu Q, Wu Q, Huang M, Zhou Z. Pyrrolidine dithiocarbamate attenuates paraquat-induced lung injury in rats. Biomed Biotechnol. 2009;61948:7.
5.
go back to reference Keung WM. Biochemical studies of a new class of alcohol dehydrogenase inhibitors from Radix puerariae. Alcohol Clin Exp Res. 1993;17:1254–60.CrossRefPubMed Keung WM. Biochemical studies of a new class of alcohol dehydrogenase inhibitors from Radix puerariae. Alcohol Clin Exp Res. 1993;17:1254–60.CrossRefPubMed
6.
go back to reference Benlhabib E, Baker JI, Keyler DE, Singh AK. Effects of purified puerarin on voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J Med Food. 2004;7:180–6.CrossRefPubMed Benlhabib E, Baker JI, Keyler DE, Singh AK. Effects of purified puerarin on voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J Med Food. 2004;7:180–6.CrossRefPubMed
7.
go back to reference Choo MK, Park EK, Yoon HK, Kim DH. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora. Biol Pharm Bull. 2002;25:1328–32.CrossRefPubMed Choo MK, Park EK, Yoon HK, Kim DH. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora. Biol Pharm Bull. 2002;25:1328–32.CrossRefPubMed
8.
go back to reference Guerra MC, Speroni E, Broccoli M, Cangini M, Pasini P, Minghett A, et al. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci. 2000;67:2997–3006.CrossRefPubMed Guerra MC, Speroni E, Broccoli M, Cangini M, Pasini P, Minghett A, et al. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci. 2000;67:2997–3006.CrossRefPubMed
9.
go back to reference Han RM, Tian YX, Becker EM, Andersen ML, Zhang JP, Skibsted LH. Puerarin and conjugate bases as radical scavengers and antioxidants: molecular mechanism and synergism with betacarotene. J Agric Food Chem. 2007;55:2384–91.CrossRefPubMed Han RM, Tian YX, Becker EM, Andersen ML, Zhang JP, Skibsted LH. Puerarin and conjugate bases as radical scavengers and antioxidants: molecular mechanism and synergism with betacarotene. J Agric Food Chem. 2007;55:2384–91.CrossRefPubMed
10.
go back to reference Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets. 2010;11:926–35.CrossRefPubMed Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets. 2010;11:926–35.CrossRefPubMed
11.
12.
go back to reference Yang G, Yang L, Wang W, Wang J, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosisdisease progression. Gene. 2015;562:138–144.CrossRefPubMed Yang G, Yang L, Wang W, Wang J, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosisdisease progression. Gene. 2015;562:138–144.CrossRefPubMed
13.
go back to reference Chaly Y, Hostager B, Smith S, Hirsch R. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol Res. 2014;59:266–72.CrossRefPubMed Chaly Y, Hostager B, Smith S, Hirsch R. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol Res. 2014;59:266–72.CrossRefPubMed
14.
go back to reference Dong Y, Geng Y, Li L, Li X, Yan X, Fang Y, et al. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J Exp Med. 2015;212:235–52.CrossRefPubMedPubMedCentral Dong Y, Geng Y, Li L, Li X, Yan X, Fang Y, et al. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J Exp Med. 2015;212:235–52.CrossRefPubMedPubMedCentral
15.
go back to reference Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4:4.CrossRefPubMedPubMedCentral Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4:4.CrossRefPubMedPubMedCentral
16.
go back to reference Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5:S24.CrossRefPubMedPubMedCentral Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5:S24.CrossRefPubMedPubMedCentral
17.
go back to reference Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signa. 2008;10:321–32.CrossRef Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signa. 2008;10:321–32.CrossRef
18.
go back to reference Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82:1167–75.CrossRefPubMedPubMedCentral Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82:1167–75.CrossRefPubMedPubMedCentral
19.
go back to reference Zhou X, Li YJ, Gao SY, Wang XZ, Wang PY, Yan YF, et al. Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21. J Cell Mol Med. 2015;19:1103–1113.CrossRefPubMedPubMedCentral Zhou X, Li YJ, Gao SY, Wang XZ, Wang PY, Yan YF, et al. Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21. J Cell Mol Med. 2015;19:1103–1113.CrossRefPubMedPubMedCentral
20.
go back to reference Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrixinduced by CTGF or TGF-β in ARPE-19. Int J Ophthalmol. 2013;6:8–14.PubMedPubMedCentral Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrixinduced by CTGF or TGF-β in ARPE-19. Int J Ophthalmol. 2013;6:8–14.PubMedPubMedCentral
22.
go back to reference Yamamoto K, Hamada H, Shinkai H, Kohno Y, Koseki H, Aoe T. The KDEL receptor modulates the endoplasmic reticulum stress response through mitogen-activated protein kinase signaling cascades. J Biol Chem. 2003;278:34525–32.CrossRefPubMed Yamamoto K, Hamada H, Shinkai H, Kohno Y, Koseki H, Aoe T. The KDEL receptor modulates the endoplasmic reticulum stress response through mitogen-activated protein kinase signaling cascades. J Biol Chem. 2003;278:34525–32.CrossRefPubMed
23.
go back to reference Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc. 2007;2:2295–301.CrossRefPubMedPubMedCentral Mukhopadhyay P, Rajesh M, Haskó G, Hawkins BJ, Madesh M, Pacher P. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc. 2007;2:2295–301.CrossRefPubMedPubMedCentral
24.
go back to reference Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–2.PubMed Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–2.PubMed
25.
go back to reference Edwards CA, O’Brien Jr WD. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta. 1980;104:161–7.CrossRefPubMed Edwards CA, O’Brien Jr WD. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta. 1980;104:161–7.CrossRefPubMed
26.
27.
go back to reference Bus JS, Aust SD, Gibson JE. Superoxide- and singlet oxygencatalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun. 1974;58:749–55.CrossRefPubMed Bus JS, Aust SD, Gibson JE. Superoxide- and singlet oxygencatalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun. 1974;58:749–55.CrossRefPubMed
29.
go back to reference Eddleston M, Wilks MF, Buckley NA. Prospects for treatment of paraquat-induced lung fibrosis with immunosuppressive drugs and the need for better prediction of outcome: a systematic review. QJM. 2003;96:809–24.CrossRefPubMedPubMedCentral Eddleston M, Wilks MF, Buckley NA. Prospects for treatment of paraquat-induced lung fibrosis with immunosuppressive drugs and the need for better prediction of outcome: a systematic review. QJM. 2003;96:809–24.CrossRefPubMedPubMedCentral
30.
go back to reference Bismuth C, Hall AH, Baud FJ. Pulmonary dysfunction in survivors of acute paraquat poisoning. Vet Hum Toxicol. 1996;38:220–2.PubMed Bismuth C, Hall AH, Baud FJ. Pulmonary dysfunction in survivors of acute paraquat poisoning. Vet Hum Toxicol. 1996;38:220–2.PubMed
31.
go back to reference Gao Q, Yang B, Ye ZG, Wang J, Bruce IC, Xia F. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur J Pharmacol. 2007;574:179–84.CrossRefPubMed Gao Q, Yang B, Ye ZG, Wang J, Bruce IC, Xia F. Opening the calcium-activated potassium channel participates in the cardioprotective effect of puerarin. Eur J Pharmacol. 2007;574:179–84.CrossRefPubMed
32.
go back to reference Zhu QL, He AX, Lu XR. Effects of puerarin on the scavenge of oxygen free radicals and the antagonism against oxidative injury. Pharm J Clin PLA. 2001;17:1–3. Zhu QL, He AX, Lu XR. Effects of puerarin on the scavenge of oxygen free radicals and the antagonism against oxidative injury. Pharm J Clin PLA. 2001;17:1–3.
33.
go back to reference Zhao M, Du YQ, Yuan L, Wang NN. Protective effect of puerarin on acute alcoholic liver injury. Am J Chin Med. 2010;38:241–9.CrossRefPubMed Zhao M, Du YQ, Yuan L, Wang NN. Protective effect of puerarin on acute alcoholic liver injury. Am J Chin Med. 2010;38:241–9.CrossRefPubMed
34.
go back to reference Xu C, Li G, Gao Y, Liu S, Lin J, Zhang J, et al. Effect of puerarin on P2X3 receptor involved in hyperalgesia after burn injury in the rat. Brain Res Bull. 2009;80:341–6.CrossRefPubMed Xu C, Li G, Gao Y, Liu S, Lin J, Zhang J, et al. Effect of puerarin on P2X3 receptor involved in hyperalgesia after burn injury in the rat. Brain Res Bull. 2009;80:341–6.CrossRefPubMed
35.
go back to reference Yang X, Hu W, Zhang Q, Wang Y, Sun L. Puerarin inhibits C-reactive protein expression via suppression of nuclear factor kappaB activation in lipopolysaccharide-induced peripheral blood mononuclear cells of patients with stable angina pectoris. Basic Clin Pharmacol Toxicol. 2010;107:637–42.CrossRefPubMed Yang X, Hu W, Zhang Q, Wang Y, Sun L. Puerarin inhibits C-reactive protein expression via suppression of nuclear factor kappaB activation in lipopolysaccharide-induced peripheral blood mononuclear cells of patients with stable angina pectoris. Basic Clin Pharmacol Toxicol. 2010;107:637–42.CrossRefPubMed
37.
go back to reference He Y, Huang C, Li J. miR-21 is a critical therapeutic target for renal fibrosis. Cell Biochem Biophys. 2014;68:635–6.CrossRefPubMed He Y, Huang C, Li J. miR-21 is a critical therapeutic target for renal fibrosis. Cell Biochem Biophys. 2014;68:635–6.CrossRefPubMed
38.
go back to reference Huang Y, He Y, Li J. MicroRNA-21: a central regulator of fibrotic diseases via various targets. Curr Pharm Des. 2015;21:2236–2242.CrossRefPubMed Huang Y, He Y, Li J. MicroRNA-21: a central regulator of fibrotic diseases via various targets. Curr Pharm Des. 2015;21:2236–2242.CrossRefPubMed
39.
go back to reference Wei J, Feng L, Li Z, Xu G, Fan X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother. 2013;67:387–92.CrossRefPubMed Wei J, Feng L, Li Z, Xu G, Fan X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother. 2013;67:387–92.CrossRefPubMed
40.
go back to reference Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.CrossRefPubMed Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.CrossRefPubMed
41.
go back to reference Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97.CrossRefPubMedPubMedCentral Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97.CrossRefPubMedPubMedCentral
42.
go back to reference Cook NL, Pereira TN, Lewindon PJ, Shepherd RW, Ramm GA. Circulating MicroRNAs as Noninvasive Diagnostic Biomarkers of Liver Disease in Children With Cystic Fibrosis. J Pediatr Gastroenterol Nutr. 2015;60:247–54.CrossRefPubMed Cook NL, Pereira TN, Lewindon PJ, Shepherd RW, Ramm GA. Circulating MicroRNAs as Noninvasive Diagnostic Biomarkers of Liver Disease in Children With Cystic Fibrosis. J Pediatr Gastroenterol Nutr. 2015;60:247–54.CrossRefPubMed
43.
go back to reference Yang Y, Kim B, Park YK, Koo SI, Lee JY. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta. 2015;1850:178–85.CrossRefPubMed Yang Y, Kim B, Park YK, Koo SI, Lee JY. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta. 2015;1850:178–85.CrossRefPubMed
45.
go back to reference Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2013;142–143:431–40.CrossRefPubMed Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2013;142–143:431–40.CrossRefPubMed
46.
go back to reference Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.CrossRefPubMed Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.CrossRefPubMed
47.
go back to reference Jhang KA, Lee EO, Kim HS, Chong YH. Norepinephrine provides short-term neuroprotection against Aβ1-42 by reducing oxidative stress independent of Nrf2 activation. Neurobiol Aging. 2014;35:2465–73.CrossRefPubMed Jhang KA, Lee EO, Kim HS, Chong YH. Norepinephrine provides short-term neuroprotection against Aβ1-42 by reducing oxidative stress independent of Nrf2 activation. Neurobiol Aging. 2014;35:2465–73.CrossRefPubMed
48.
go back to reference Rushworth SA, MacEwan DJ, O’Connell MA. Lipopolysaccharideinduced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol. 2008;181:6730–7.CrossRefPubMedPubMedCentral Rushworth SA, MacEwan DJ, O’Connell MA. Lipopolysaccharideinduced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol. 2008;181:6730–7.CrossRefPubMedPubMedCentral
49.
go back to reference Singh MK, Bhattacharya D, Chaudhuri S, Acharya S, Kumar P, Santra P, et al. T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin αv and TGF-β1 expressions. Tumour Biol. 2014;35:2231–46.CrossRefPubMed Singh MK, Bhattacharya D, Chaudhuri S, Acharya S, Kumar P, Santra P, et al. T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin αv and TGF-β1 expressions. Tumour Biol. 2014;35:2231–46.CrossRefPubMed
50.
go back to reference El-Khouly D, El-Bakly WM, Awad AS, El-Mesallamy HO, El-Demerdash E. Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor Kappa-B in rats. Toxicology. 2012;302:106–13.CrossRefPubMed El-Khouly D, El-Bakly WM, Awad AS, El-Mesallamy HO, El-Demerdash E. Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor Kappa-B in rats. Toxicology. 2012;302:106–13.CrossRefPubMed
51.
go back to reference Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, et al. Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement Altern Med. 2014;14:498.CrossRefPubMedPubMedCentral Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, et al. Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement Altern Med. 2014;14:498.CrossRefPubMedPubMedCentral
52.
go back to reference Azambuja E, Fleck JF, Batista RG, Menna Barreto SS. Bleomycin lung toxicity: Who are the patients with increased risk? Pulm Pharmacol Ther. 2005;18:363–6.CrossRefPubMed Azambuja E, Fleck JF, Batista RG, Menna Barreto SS. Bleomycin lung toxicity: Who are the patients with increased risk? Pulm Pharmacol Ther. 2005;18:363–6.CrossRefPubMed
53.
go back to reference Chia HN, Vigen M, Kasko AM. Effect of substrate stiffness on pulmonary fibroblast activation by TGF-β. Acta Biomater. 2012;8:2602–11.CrossRefPubMed Chia HN, Vigen M, Kasko AM. Effect of substrate stiffness on pulmonary fibroblast activation by TGF-β. Acta Biomater. 2012;8:2602–11.CrossRefPubMed
Metadata
Title
Radix puerariae extracts ameliorate paraquat-induced pulmonary fibrosis by attenuating follistatin-like 1 and nuclear factor erythroid 2p45-related factor-2 signalling pathways through downregulation of miRNA-21 expression
Authors
Ming-wei Liu
Rong Liu
Hai-ying Wu
Yi-yun Li
Mei-xian Su
Min-na Dong
Wei Zhang
Chuan-yun Qian
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-0991-6

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue