Skip to main content
Top
Published in: EJNMMI Research 1/2022

Open Access 01-12-2022 | Radioimmunotherapy | Preliminary research

Radioimmunotherapy study of 131I-labeled Atezolizumab in preclinical models of colorectal cancer

Authors: Linhan Zhang, Sheng Zhao, Huijie Jiang, Rongjun Zhang, Mingyu Zhang, Wenbin Pan, Zhongqi Sun, Dandan Wang, Jinping Li

Published in: EJNMMI Research | Issue 1/2022

Login to get access

Abstract

Background

Programmed cell death 1 ligand 1(PD-L1) is overexpressed in many tumors. The radionuclide-labeled anti-PD-L1 monoclonal antibody can be used for imaging and therapy of PD-L1 overexpressing cancer. Here, we described 131I-labeled Atezolizumab (131I-Atezolizumab, targeting PD-L1) as a therapeutic agent for colorectal cancer with PD-L1 overexpression.

Methods

131I-Atezolizumab was prepared by the Iodogen method. The expression levels of PD-L1 in different human colorectal cells were determined by flow cytometry, western blot and cell binding assay. The immunoreactivity of 131I-Atezolizumab to PD-L1 high-expressing cells was determined by immunoreactive fraction. The killing abilities of different concentrations of 131I-Atezolizumab on cells with high and low expression of PD-L1 were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Cerenkov luminescence imaging (CLI) and radioimmunotherapy (RIT) of 131I-Atezolizumab were performed on two human colorectal cancer models. The distribution and tumor targeting of 131I-Atezolizumab were evaluated by imaging. Tumor volume and survival time were used as indicators to evaluate the anti-tumor effect of 131I-Atezolizumab.

Results

The expression level of PD-L1 in vitro determined by the cell binding assay was related to the data of flow cytometry and western blot. 131I-Atezolizumab can specifically bind to PD-L1 high-expressing cells in vitro to reflect the expression level of PD-L1. Immunoreactive fraction of PD-L1 high-expressing RKO cells with 131I-Atezolizumab was 52.2%. The killing ability of 131I-Atezolizumab on PD-L1 high-expressing cells was higher than that of low-expressing cells. CLI proved that the specific uptake level of tumors depends on the expression level of PD-L1. Effect of 131I-Atezolizumab RIT showed an activity-dependent tumor suppressor effect on RKO tumor-bearing mice with high PD-L1 expression. 131I-Atezolizumab (37 MBq) can improve the median survival time of mice (34 days), compared to untreated mice (27 days) (P = 0.027). Although a single activity(37 MBq) of 131I-Atezolizumab also inhibited the tumors of HCT8 tumor-bearing mice with low PD-L1 expression (P < 0.05), it could not prolong the survival of mice(P = 0.29).

Conclusion

131I-Atezolizumab can be used as a CLI agent for screening PD-L1 expression levels. It may be used as a radioimmunotherapy drug target for PD- L1 overexpressing tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8.CrossRefPubMedPubMedCentral Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8.CrossRefPubMedPubMedCentral
4.
go back to reference Gong X, Li X, Jiang T, Xie H, Zhu Z, Zhou F, et al. Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol. 2017;12(7):1085–97.CrossRefPubMed Gong X, Li X, Jiang T, Xie H, Zhu Z, Zhou F, et al. Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol. 2017;12(7):1085–97.CrossRefPubMed
5.
go back to reference Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–68.CrossRefPubMed Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–68.CrossRefPubMed
7.
go back to reference Ren J, Xu M, Chen J, Ding J, Wang P, Huo L, et al. PET imaging facilitates antibody screening for synergistic radioimmunotherapy with a (177)Lu-labeled αPD-L1 antibody. Theranostics. 2021;11(1):304–15.CrossRefPubMedPubMedCentral Ren J, Xu M, Chen J, Ding J, Wang P, Huo L, et al. PET imaging facilitates antibody screening for synergistic radioimmunotherapy with a (177)Lu-labeled αPD-L1 antibody. Theranostics. 2021;11(1):304–15.CrossRefPubMedPubMedCentral
8.
go back to reference Pang X, Liu M, Wang R, Liao X, Yan P, Zhang C. Radioimmunoimaging and targeting treatment in an immunocompetent murine model of triple-negative breast cancer using radiolabeled anti-programmed death-ligand 1 monoclonal antibody. J Label Compd Radiopharm. 2018;61(11):826–36.CrossRef Pang X, Liu M, Wang R, Liao X, Yan P, Zhang C. Radioimmunoimaging and targeting treatment in an immunocompetent murine model of triple-negative breast cancer using radiolabeled anti-programmed death-ligand 1 monoclonal antibody. J Label Compd Radiopharm. 2018;61(11):826–36.CrossRef
9.
go back to reference Tapia Rico G, Price TJ. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential. Expert Opin Biol Ther. 2018;18(4):449–57.CrossRefPubMed Tapia Rico G, Price TJ. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential. Expert Opin Biol Ther. 2018;18(4):449–57.CrossRefPubMed
10.
go back to reference Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.CrossRefPubMed Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.CrossRefPubMed
11.
go back to reference Zhao S, Pan W, Jiang H, Zhang R, Jiang H, Liang Z, et al. Cerenkov luminescence imaging is an effective preclinical tool for assessing colorectal cancer PD-L1 levels in vivo. EJNMMI Res. 2020;10(1):64. Zhao S, Pan W, Jiang H, Zhang R, Jiang H, Liang Z, et al. Cerenkov luminescence imaging is an effective preclinical tool for assessing colorectal cancer PD-L1 levels in vivo. EJNMMI Res. 2020;10(1):64.
12.
go back to reference Bailly C, Vidal A, Bonnemaire C, Kraeber-Bodere F, Cherel M, Pallardy A, et al. Potential for nuclear medicine therapy for glioblastoma treatment. Front Pharmacol. 2019;10:772.CrossRefPubMedPubMedCentral Bailly C, Vidal A, Bonnemaire C, Kraeber-Bodere F, Cherel M, Pallardy A, et al. Potential for nuclear medicine therapy for glioblastoma treatment. Front Pharmacol. 2019;10:772.CrossRefPubMedPubMedCentral
13.
go back to reference D’Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4(7):708–20.CrossRefPubMedPubMedCentral D’Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4(7):708–20.CrossRefPubMedPubMedCentral
14.
go back to reference Tsai WK, Zettlitz KA, Dahlbom M, Reiter RE, Wu AM. Evaluation of [(131)I]I- and [(177)Lu]Lu-DTPA-A11 minibody for radioimmunotherapy in a preclinical model of PSCA-expressing prostate cancer. Mol Imaging Biol. 2020;22(5):1380–91.CrossRefPubMedPubMedCentral Tsai WK, Zettlitz KA, Dahlbom M, Reiter RE, Wu AM. Evaluation of [(131)I]I- and [(177)Lu]Lu-DTPA-A11 minibody for radioimmunotherapy in a preclinical model of PSCA-expressing prostate cancer. Mol Imaging Biol. 2020;22(5):1380–91.CrossRefPubMedPubMedCentral
15.
go back to reference Aherne GW, James SL, Marks V. The radioiodination of bleomycin using iodogen. Clin Chim Acta. 1982;3(119):341–3. Aherne GW, James SL, Marks V. The radioiodination of bleomycin using iodogen. Clin Chim Acta. 1982;3(119):341–3.
16.
go back to reference Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89.CrossRefPubMed Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89.CrossRefPubMed
17.
go back to reference Chang YJ, Ho CL, Cheng KH, Kuo WI, Lee WC, Lan KL, et al. Biodistribution, pharmacokinetics and radioimmunotherapy of (188)Re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Investig New Drugs. 2019;37(5):961–72.CrossRef Chang YJ, Ho CL, Cheng KH, Kuo WI, Lee WC, Lan KL, et al. Biodistribution, pharmacokinetics and radioimmunotherapy of (188)Re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Investig New Drugs. 2019;37(5):961–72.CrossRef
19.
go back to reference Zhang GQ, Taylor JP, Stem M, Almaazmi H, Efron JE, Atallah C, et al. Aggressive multimodal treatment and metastatic colorectal cancer survival. J Am Coll Surg. 2020;230(4):689–98.CrossRefPubMed Zhang GQ, Taylor JP, Stem M, Almaazmi H, Efron JE, Atallah C, et al. Aggressive multimodal treatment and metastatic colorectal cancer survival. J Am Coll Surg. 2020;230(4):689–98.CrossRefPubMed
20.
go back to reference Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefPubMedPubMedCentral Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefPubMedPubMedCentral
21.
go back to reference Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868–76.CrossRefPubMed Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868–76.CrossRefPubMed
22.
go back to reference Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.CrossRefPubMedPubMedCentral Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.CrossRefPubMedPubMedCentral
23.
go back to reference Ritprajak P, Azuma M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol. 2015;51(3):221–8.CrossRefPubMed Ritprajak P, Azuma M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol. 2015;51(3):221–8.CrossRefPubMed
24.
go back to reference Zhang M, Jiang H, Zhang R, Jiang H, Xu H, Pan W, et al. Near-infrared fluorescence-labeled anti-PD-L1-mAb for tumor imaging in human colorectal cancer xenografted mice. J Cell Biochem. 2019;120(6):10239–47.CrossRefPubMedPubMedCentral Zhang M, Jiang H, Zhang R, Jiang H, Xu H, Pan W, et al. Near-infrared fluorescence-labeled anti-PD-L1-mAb for tumor imaging in human colorectal cancer xenografted mice. J Cell Biochem. 2019;120(6):10239–47.CrossRefPubMedPubMedCentral
25.
go back to reference Wan H, Ma H, Zhu S, Wang F, Tian Y, Ma R, et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv Funct Mater. 2018;28(50):1804956.CrossRefPubMedPubMedCentral Wan H, Ma H, Zhu S, Wang F, Tian Y, Ma R, et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv Funct Mater. 2018;28(50):1804956.CrossRefPubMedPubMedCentral
26.
go back to reference Qin S, Yu Y, Guan H, Yang Y, Sun F, Sun Y, et al. A preclinical study_ correlation between PD-L1 PET imaging and the__prediction of therapy efficacy of MC38 tumor with 68Ga-labeled PD-L1 targeted nanobody. Aging (Albany NY). 2021;13(9):13006–22.CrossRef Qin S, Yu Y, Guan H, Yang Y, Sun F, Sun Y, et al. A preclinical study_ correlation between PD-L1 PET imaging and the__prediction of therapy efficacy of MC38 tumor with 68Ga-labeled PD-L1 targeted nanobody. Aging (Albany NY). 2021;13(9):13006–22.CrossRef
27.
go back to reference Gao H, Wu Y, Shi J, Zhang X, Liu T, Hu B, et al. Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. J Immunother Cancer. 2020;8(2): e001156.CrossRefPubMedPubMedCentral Gao H, Wu Y, Shi J, Zhang X, Liu T, Hu B, et al. Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. J Immunother Cancer. 2020;8(2): e001156.CrossRefPubMedPubMedCentral
28.
go back to reference Du Y, Liang X, Li Y, Sun T, Xue H, Jin Z, et al. Liposomal nanohybrid cerasomes targeted to PD-L1 enable dual-modality imaging and improve antitumor treatments. Cancer Lett. 2018;414:230–8.CrossRefPubMed Du Y, Liang X, Li Y, Sun T, Xue H, Jin Z, et al. Liposomal nanohybrid cerasomes targeted to PD-L1 enable dual-modality imaging and improve antitumor treatments. Cancer Lett. 2018;414:230–8.CrossRefPubMed
29.
go back to reference Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, et al. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer. Cancer Res. 2016;76(2):472–9.CrossRefPubMed Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, et al. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer. Cancer Res. 2016;76(2):472–9.CrossRefPubMed
30.
go back to reference Ekinci M, Santos-Oliveira R, Derya I-O. Biodistribution of 99mTc-PLA/PVA/Atezolizumab nanoparticles for non-small cell lung cancer diagnosis. Eur J Pharm Biopharm. 2022;176:21–31.CrossRefPubMed Ekinci M, Santos-Oliveira R, Derya I-O. Biodistribution of 99mTc-PLA/PVA/Atezolizumab nanoparticles for non-small cell lung cancer diagnosis. Eur J Pharm Biopharm. 2022;176:21–31.CrossRefPubMed
31.
go back to reference Wong NC, Cai Y, Meszaros LK, Biersack HJ, Cook GJ, Ting HH, et al. Preclinical development and characterisation of 99mTc-NM-01 for SPECT_CT imaging of human PD-L1. Am J Nucl Med Mol Imaging. 2021;11(3):154–66.PubMedPubMedCentral Wong NC, Cai Y, Meszaros LK, Biersack HJ, Cook GJ, Ting HH, et al. Preclinical development and characterisation of 99mTc-NM-01 for SPECT_CT imaging of human PD-L1. Am J Nucl Med Mol Imaging. 2021;11(3):154–66.PubMedPubMedCentral
32.
go back to reference Bansal A, Pandey MK, Barham W, Liu X, Harrington SM, Lucien F, et al. Non-invasive immunoPET imaging of PD-L1 using anti-PD-L1-B11 in breast cancer and melanoma tumor model. Nucl Med Biol. 2021;100–101:4–11.CrossRefPubMed Bansal A, Pandey MK, Barham W, Liu X, Harrington SM, Lucien F, et al. Non-invasive immunoPET imaging of PD-L1 using anti-PD-L1-B11 in breast cancer and melanoma tumor model. Nucl Med Biol. 2021;100–101:4–11.CrossRefPubMed
33.
go back to reference Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, et al. A pretargeted imaging strategy for immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal diels-alder click chemistry. Mol Imaging Biol. 2020;22(4):842–53.CrossRefPubMed Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, et al. A pretargeted imaging strategy for immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal diels-alder click chemistry. Mol Imaging Biol. 2020;22(4):842–53.CrossRefPubMed
34.
go back to reference Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A, et al. PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer. 2019;7(1):144.CrossRefPubMedPubMedCentral Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A, et al. PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer. 2019;7(1):144.CrossRefPubMedPubMedCentral
35.
go back to reference Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 Expression with ImmunoPET. Bioconjugate Chem. 2018;29(1):96–103.CrossRef Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD-L1 Expression with ImmunoPET. Bioconjugate Chem. 2018;29(1):96–103.CrossRef
36.
go back to reference Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215–27.CrossRefPubMedPubMedCentral Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215–27.CrossRefPubMedPubMedCentral
37.
go back to reference Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, et al. PD-L1 detection in tumors using [64Cu]atezolizumab with PET. Bioconjugate Chem. 2016;27(9):2103–10.CrossRef Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, et al. PD-L1 detection in tumors using [64Cu]atezolizumab with PET. Bioconjugate Chem. 2016;27(9):2103–10.CrossRef
38.
go back to reference Rösner E, Kaemmerer D, Neubauer E, Sänger J, Lupp A. Prognostic value of PD-L1 expression in bronchopulmonary neuroendocrine tumours. Endocr Connect. 2021;2(10):180–90.CrossRef Rösner E, Kaemmerer D, Neubauer E, Sänger J, Lupp A. Prognostic value of PD-L1 expression in bronchopulmonary neuroendocrine tumours. Endocr Connect. 2021;2(10):180–90.CrossRef
39.
go back to reference Lee JB, Hong MH, Park SY, Chae S, Hwang D, Ha SJ, et al. Overexpression of PVR and PD-L1 and its association with prognosis in surgically resected squamous cell lung carcinoma. Sci Rep. 2021;11(1):8551.CrossRefPubMedPubMedCentral Lee JB, Hong MH, Park SY, Chae S, Hwang D, Ha SJ, et al. Overexpression of PVR and PD-L1 and its association with prognosis in surgically resected squamous cell lung carcinoma. Sci Rep. 2021;11(1):8551.CrossRefPubMedPubMedCentral
40.
go back to reference Niu G, Li Z, Xie J, Le QT, Chen X. PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med. 2009;50(7):1116–23.CrossRefPubMed Niu G, Li Z, Xie J, Le QT, Chen X. PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med. 2009;50(7):1116–23.CrossRefPubMed
41.
go back to reference Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG, et al. noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with (89)Zr-Df-Atezolizumab. Bioconjug Chem. 2019;30(5):1434–41.CrossRefPubMedPubMedCentral Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG, et al. noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with (89)Zr-Df-Atezolizumab. Bioconjug Chem. 2019;30(5):1434–41.CrossRefPubMedPubMedCentral
Metadata
Title
Radioimmunotherapy study of 131I-labeled Atezolizumab in preclinical models of colorectal cancer
Authors
Linhan Zhang
Sheng Zhao
Huijie Jiang
Rongjun Zhang
Mingyu Zhang
Wenbin Pan
Zhongqi Sun
Dandan Wang
Jinping Li
Publication date
01-12-2022
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2022
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-022-00939-2

Other articles of this Issue 1/2022

EJNMMI Research 1/2022 Go to the issue