Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2018

Open Access 01-12-2018 | Review

Radiations and female fertility

Authors: Roberto Marci, Maddalena Mallozzi, Luisa Di Benedetto, Mauro Schimberni, Stefano Mossa, Ilaria Soave, Stefano Palomba, Donatella Caserta

Published in: Reproductive Biology and Endocrinology | Issue 1/2018

Login to get access

Abstract

Hundreds of thousands of young women are diagnosed with cancer each year, and due to recent advances in screening programs, diagnostic methods and treatment options, survival rates have significantly improved. Radiation therapy plays an important role in cancer treatment and in some cases it constitutes the first therapy proposed to the patient. However, ionizing radiations have a gonadotoxic action with long-term effects that include ovarian insufficiency, pubertal arrest and subsequent infertility. Cranial irradiation may lead to disruption of the hypothalamic-pituitary-gonadal axis, with consequent dysregulation of the normal hormonal secretion. The uterus might be damaged by radiotherapy, as well. In fact, exposure to radiation during childhood leads to altered uterine vascularization, decreased uterine volume and elasticity, myometrial fibrosis and necrosis, endometrial atrophy and insufficiency. As radiations have a relevant impact on reproductive potential, fertility preservation procedures should be carried out before and/or during anticancer treatments. Fertility preservation strategies have been employed for some years now and have recently been diversified thanks to advances in reproductive biology. Aim of this paper is to give an overview of the various effects of radiotherapy on female reproductive function and to describe the current fertility preservation options.
Literature
1.
go back to reference Juutilainen J. Developmental affects of electromagnetic fields. Bioelectromagnetics. 2005;26(Suppl 7):S107–15.CrossRef Juutilainen J. Developmental affects of electromagnetic fields. Bioelectromagnetics. 2005;26(Suppl 7):S107–15.CrossRef
3.
go back to reference Vesselinova L. Body mass index as a risk prediction and prevention factor for professional mixed lowintensity EMF burden. Electromagn Biol Med. 2015;34(3):238–43.PubMedCrossRef Vesselinova L. Body mass index as a risk prediction and prevention factor for professional mixed lowintensity EMF burden. Electromagn Biol Med. 2015;34(3):238–43.PubMedCrossRef
4.
go back to reference Tabrah FL, Ross P, Hoffmeier M, Gilbert F Jr. Clinical repot on long-term bone density after short-term EMF application. Bioelectromagnetics. 1998;19(2):75–8.PubMedCrossRef Tabrah FL, Ross P, Hoffmeier M, Gilbert F Jr. Clinical repot on long-term bone density after short-term EMF application. Bioelectromagnetics. 1998;19(2):75–8.PubMedCrossRef
5.
go back to reference SCENIHR. Potential health effects of exposure to electromagnetic fields. In: Scientific committee on emerging and newly identified health risks; 2015. SCENIHR. Potential health effects of exposure to electromagnetic fields. In: Scientific committee on emerging and newly identified health risks; 2015.
6.
go back to reference Heynick LN, Merritt JH. Radiofrequency fields and teratogenesis. Bioelectromagnetics. 2003;24(Suppl 6):S174–86.CrossRef Heynick LN, Merritt JH. Radiofrequency fields and teratogenesis. Bioelectromagnetics. 2003;24(Suppl 6):S174–86.CrossRef
7.
go back to reference Cecconi S, Gualtieri G, Di Bartolomeo A, Troiani G, Cifone MG, Canipari R. Evaluation of the effects of extremely low frequency electromagnetic fields on mammalian follicle development. Hum Reprod. 2000;15(11):2319–25.PubMedCrossRef Cecconi S, Gualtieri G, Di Bartolomeo A, Troiani G, Cifone MG, Canipari R. Evaluation of the effects of extremely low frequency electromagnetic fields on mammalian follicle development. Hum Reprod. 2000;15(11):2319–25.PubMedCrossRef
8.
go back to reference Khaki A, Ranjbar M, Rahimi F, Ghahramanian A. The effects of electromagnetic field (EMFs) on ovary in rat. Ultrasound Obstet Gynecol. 2011;38:269.CrossRef Khaki A, Ranjbar M, Rahimi F, Ghahramanian A. The effects of electromagnetic field (EMFs) on ovary in rat. Ultrasound Obstet Gynecol. 2011;38:269.CrossRef
10.
go back to reference Roshangar L, Soleimani RJ. Electron microscopic study of folliculogenesis after electromagnetic field exposure. J Reprod Infertil. 2004;5(4):299–307. Roshangar L, Soleimani RJ. Electron microscopic study of folliculogenesis after electromagnetic field exposure. J Reprod Infertil. 2004;5(4):299–307.
11.
go back to reference Soleimani Rad J, Rowshangar L, Karimi K. The effect of Electromagnetic field on Fallopian Tube. IFFS 2001 Selected Free Communication, Monduzzi Editore. Moelbourne: International Proceedings Division; 2001. p. 25–30. Soleimani Rad J, Rowshangar L, Karimi K. The effect of Electromagnetic field on Fallopian Tube. IFFS 2001 Selected Free Communication, Monduzzi Editore. Moelbourne: International Proceedings Division; 2001. p. 25–30.
12.
go back to reference Cao YN, Zhang Y, Liu Y. Effects of exposure to extremely low frequency electromagnetic fields on reproduction of female mice and development of offspring. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2006;24(8):468–70.PubMed Cao YN, Zhang Y, Liu Y. Effects of exposure to extremely low frequency electromagnetic fields on reproduction of female mice and development of offspring. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2006;24(8):468–70.PubMed
13.
go back to reference Goldhaber MK, Polen MR, Hiatt RA. The risk of miscarriage and birth defects among women who use visual display terminals during pregnancy. Am J Ind Med. 1988;13:695–706.PubMedCrossRef Goldhaber MK, Polen MR, Hiatt RA. The risk of miscarriage and birth defects among women who use visual display terminals during pregnancy. Am J Ind Med. 1988;13:695–706.PubMedCrossRef
14.
go back to reference Chung MK, Lee SJ, Kim YB, Park SC, Shin DH, Kim SH, et al. Evaluation of spermatogenesis and fertility in F1 male rats after in utero and neonatal exposure to extremely low frequency electromagnetic fields. Asian J Androl. 2005;7(2):189–94.PubMedCrossRef Chung MK, Lee SJ, Kim YB, Park SC, Shin DH, Kim SH, et al. Evaluation of spermatogenesis and fertility in F1 male rats after in utero and neonatal exposure to extremely low frequency electromagnetic fields. Asian J Androl. 2005;7(2):189–94.PubMedCrossRef
15.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedCrossRef
16.
go back to reference Irtan S, Orbach D, Helfre S, Sarnacki S. Ovarian transposition in prepubescent and adolescent girls with cancer. Lancet Oncol. 2013;14(13):e601–8.PubMedCrossRef Irtan S, Orbach D, Helfre S, Sarnacki S. Ovarian transposition in prepubescent and adolescent girls with cancer. Lancet Oncol. 2013;14(13):e601–8.PubMedCrossRef
17.
18.
go back to reference Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6):535–43.PubMedCrossRef Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6):535–43.PubMedCrossRef
19.
go back to reference Muñoz M, Santaballa A, Seguí MA, Beato C, de la Cruz S, Espinosa J, et al. SEOM clinical guideline of fertility preservation and reproduction in cancer patients (2016). Clin Transl Oncol. 2016;18(12):1229–36.PubMedPubMedCentralCrossRef Muñoz M, Santaballa A, Seguí MA, Beato C, de la Cruz S, Espinosa J, et al. SEOM clinical guideline of fertility preservation and reproduction in cancer patients (2016). Clin Transl Oncol. 2016;18(12):1229–36.PubMedPubMedCentralCrossRef
20.
go back to reference Biedka M, Kuźba-Kryszak T, Nowikiewicz T, Żyromska A. Fertility impairment in radiotherapy. Contemp Oncol (Pozn). 2016;20(3):199–204. Biedka M, Kuźba-Kryszak T, Nowikiewicz T, Żyromska A. Fertility impairment in radiotherapy. Contemp Oncol (Pozn). 2016;20(3):199–204.
21.
go back to reference Archana KS, Kanika C, Rajrani S, Sanchita D. Ovarian volume and antral follicle count versus serum FSH measurement in assessment of ovarian reserve. IOSR-JDMS. 2017;16(4):44–7.CrossRef Archana KS, Kanika C, Rajrani S, Sanchita D. Ovarian volume and antral follicle count versus serum FSH measurement in assessment of ovarian reserve. IOSR-JDMS. 2017;16(4):44–7.CrossRef
22.
go back to reference Wo JY, Viswanathan AN. The impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–12.PubMedPubMedCentralCrossRef Wo JY, Viswanathan AN. The impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–12.PubMedPubMedCentralCrossRef
24.
go back to reference Adriaens I, Smitz J, Jacquet P. The current knowledge on radiosensitivity of ovarian follicle development stages. Hum Reprod Update. 2009;15:359–77.PubMedCrossRef Adriaens I, Smitz J, Jacquet P. The current knowledge on radiosensitivity of ovarian follicle development stages. Hum Reprod Update. 2009;15:359–77.PubMedCrossRef
25.
go back to reference Jaroudi S, Kakourou G, Cawood S, Doshi A, Ranieri DM, Serhal P, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod. 2009;24:2649–55.PubMedCrossRef Jaroudi S, Kakourou G, Cawood S, Doshi A, Ranieri DM, Serhal P, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod. 2009;24:2649–55.PubMedCrossRef
26.
go back to reference Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18(1):117–21.CrossRefPubMed Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18(1):117–21.CrossRefPubMed
27.
go back to reference Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101:109–16.PubMedPubMedCentral Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101:109–16.PubMedPubMedCentral
28.
go back to reference Bath LE, Wallace WH, Critchley HO. Late effects of the treatment of child- hood cancer on the female reproductive system and the potential for fertility preservation. BJOG. 2002;109(2):107–14.PubMedCrossRef Bath LE, Wallace WH, Critchley HO. Late effects of the treatment of child- hood cancer on the female reproductive system and the potential for fertility preservation. BJOG. 2002;109(2):107–14.PubMedCrossRef
29.
go back to reference Gross E, Champetier C, Pointreau Y, Zaccariotto A, Dubergé T, Guerder C, et al. Normal tissue tolerance to external beam radiation therapy: ovaries. Cancer Radiother. 2010;14:373–5.PubMedCrossRef Gross E, Champetier C, Pointreau Y, Zaccariotto A, Dubergé T, Guerder C, et al. Normal tissue tolerance to external beam radiation therapy: ovaries. Cancer Radiother. 2010;14:373–5.PubMedCrossRef
30.
go back to reference Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.CrossRefPubMed Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.CrossRefPubMed
31.
go back to reference Royal College of Physicians of London. Management of Gonadal Toxicity Resulting from the Treatment of Adult Cancer: Report of a Working Party of the Joint Council for Clinical Oncology. London: JCCO; 1998. Royal College of Physicians of London. Management of Gonadal Toxicity Resulting from the Treatment of Adult Cancer: Report of a Working Party of the Joint Council for Clinical Oncology. London: JCCO; 1998.
32.
go back to reference Damewood MD, Grochow LB. Prospects for fertility after chemotherapy or radiation for neoplastic disease. Fertil Steril. 1986;45(4):443–59.PubMedCrossRef Damewood MD, Grochow LB. Prospects for fertility after chemotherapy or radiation for neoplastic disease. Fertil Steril. 1986;45(4):443–59.PubMedCrossRef
33.
go back to reference Chemaitilly W, Mertens AC, Mitby P, Whitton J, Stovall M, Yasui Y, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91(5):1723–8.PubMedCrossRef Chemaitilly W, Mertens AC, Mitby P, Whitton J, Stovall M, Yasui Y, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91(5):1723–8.PubMedCrossRef
34.
go back to reference Rodriguez-Wallberg KA, Oktay K. Fertility preservation during cancer treatment: clinical guidelines. Cancer Manag Res. 2014;6:105–17.PubMedPubMedCentral Rodriguez-Wallberg KA, Oktay K. Fertility preservation during cancer treatment: clinical guidelines. Cancer Manag Res. 2014;6:105–17.PubMedPubMedCentral
35.
go back to reference Schuck A, Hamelmann V, Brämswing JH, Könemann S, Rübe C, Hesselmann S, et al. Ovarian function following pelvic irradiation in prepubertal and pubertal girls and young adult women. Strahelenther Onkol. 2005;181(8):534–9.CrossRef Schuck A, Hamelmann V, Brämswing JH, Könemann S, Rübe C, Hesselmann S, et al. Ovarian function following pelvic irradiation in prepubertal and pubertal girls and young adult women. Strahelenther Onkol. 2005;181(8):534–9.CrossRef
36.
go back to reference Loren AW, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31(19):2500–10.PubMedPubMedCentralCrossRef Loren AW, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31(19):2500–10.PubMedPubMedCentralCrossRef
37.
go back to reference Parker WH, Broder MS, Chang E, Feskanich D, Farquhar C, Liu Z, et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet Gynecol. 2009;113:1027–37.PubMedPubMedCentralCrossRef Parker WH, Broder MS, Chang E, Feskanich D, Farquhar C, Liu Z, et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet Gynecol. 2009;113:1027–37.PubMedPubMedCentralCrossRef
38.
go back to reference Roudebush WE, Kivens WJ, Mattke JM. Estrogens (estradiol, E2) produce a negative feedback to the hypothalamus and anterior pituitary to inhibit FSH and LH secretion. Biomark Insights. 2008;3:259–68.PubMedPubMedCentralCrossRef Roudebush WE, Kivens WJ, Mattke JM. Estrogens (estradiol, E2) produce a negative feedback to the hypothalamus and anterior pituitary to inhibit FSH and LH secretion. Biomark Insights. 2008;3:259–68.PubMedPubMedCentralCrossRef
39.
go back to reference van Beek RD, van den Heuvel-Eibrink MM, Laven JS, de Jong FH, Themmen AP, Hakvoort-Cammel FG, et al. Anti-Mullerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin's lymphoma during childhood. J Clin Endocrinol Metab. 2007;92(10):3869–74.PubMedCrossRef van Beek RD, van den Heuvel-Eibrink MM, Laven JS, de Jong FH, Themmen AP, Hakvoort-Cammel FG, et al. Anti-Mullerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin's lymphoma during childhood. J Clin Endocrinol Metab. 2007;92(10):3869–74.PubMedCrossRef
40.
go back to reference La Marca A, Broekmans FJ, Volpe A, Fauser BC, Macklon NS. Anti-Mullerian hormone (AMH): what do we still need to know? Hum Reprod. 2009;24(9):2264–75.PubMedCrossRef La Marca A, Broekmans FJ, Volpe A, Fauser BC, Macklon NS. Anti-Mullerian hormone (AMH): what do we still need to know? Hum Reprod. 2009;24(9):2264–75.PubMedCrossRef
41.
go back to reference Fanchin R, Taieb J, Lozano DH, Ducot B, Frydman R, Bouyer J. High reproducibility of serum anti-Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod. 2005;20(4):923–7.PubMedCrossRef Fanchin R, Taieb J, Lozano DH, Ducot B, Frydman R, Bouyer J. High reproducibility of serum anti-Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod. 2005;20(4):923–7.PubMedCrossRef
42.
go back to reference Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C, Englert Y. Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod. 2007;22(7):1837–40.PubMedCrossRef Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C, Englert Y. Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod. 2007;22(7):1837–40.PubMedCrossRef
43.
go back to reference van Disseldorp J, Lambalk CB, Kwee J, Looman CW, Eijkemans MJ, Fauser BC, et al. Comparison of inter- and intra-cycle variability of anti-Mullerian hormone and antral follicle counts. Hum Reprod. 2010;25(1):221–7.PubMedCrossRef van Disseldorp J, Lambalk CB, Kwee J, Looman CW, Eijkemans MJ, Fauser BC, et al. Comparison of inter- and intra-cycle variability of anti-Mullerian hormone and antral follicle counts. Hum Reprod. 2010;25(1):221–7.PubMedCrossRef
44.
go back to reference Broer SL, Eijkemans MJ, Scheffer GJ, van Rooij IA, de Vet A, Themmen AP, et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab. 2011;96(8):2532–9.PubMedCrossRef Broer SL, Eijkemans MJ, Scheffer GJ, van Rooij IA, de Vet A, Themmen AP, et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab. 2011;96(8):2532–9.PubMedCrossRef
45.
go back to reference Freeman EW, Sammel MD, Lin H, Boorman DW, Gracia CR. Contribution of the rate of change of antimullerian hormone in estimating time to menopause for late reproductive-age women. Fertil Steril. 2012;98(5):1254–9.PubMedPubMedCentralCrossRef Freeman EW, Sammel MD, Lin H, Boorman DW, Gracia CR. Contribution of the rate of change of antimullerian hormone in estimating time to menopause for late reproductive-age women. Fertil Steril. 2012;98(5):1254–9.PubMedPubMedCentralCrossRef
46.
go back to reference Freeman EW, Sammel MD, Lin H, Gracia CR. Anti-mullerian hormone as a predictor of time to menopause in late reproductive age women. J Clin Endocrinol Metab. 2012;97(5):1673–80.PubMedPubMedCentralCrossRef Freeman EW, Sammel MD, Lin H, Gracia CR. Anti-mullerian hormone as a predictor of time to menopause in late reproductive age women. J Clin Endocrinol Metab. 2012;97(5):1673–80.PubMedPubMedCentralCrossRef
47.
go back to reference Broer SL, Broekmans FJ, Laven JS, Fauser BC. Anti-Mullerian hormone: ovarian reserve testing and its potential clinical implications. Hum Reprod Update. 2014;20(5):688–701.PubMedCrossRef Broer SL, Broekmans FJ, Laven JS, Fauser BC. Anti-Mullerian hormone: ovarian reserve testing and its potential clinical implications. Hum Reprod Update. 2014;20(5):688–701.PubMedCrossRef
48.
go back to reference van Helden J, Weiskirchen R. Performance of the two new fully automated anti-Mullerian hormone immunoassays compared with the clinical standard assay. Hum Reprod. 2015;30(8):1918–26.PubMedCrossRef van Helden J, Weiskirchen R. Performance of the two new fully automated anti-Mullerian hormone immunoassays compared with the clinical standard assay. Hum Reprod. 2015;30(8):1918–26.PubMedCrossRef
49.
go back to reference BJ VV. Ultrasound assessment of the ovary in the infertile woman. Semin Reprod Med. 2008;26(3):217–22.CrossRef BJ VV. Ultrasound assessment of the ovary in the infertile woman. Semin Reprod Med. 2008;26(3):217–22.CrossRef
50.
go back to reference Broer SL, Mol BW, Hendriks D, Broekmans FJ. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91(3):705–14.CrossRefPubMed Broer SL, Mol BW, Hendriks D, Broekmans FJ. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91(3):705–14.CrossRefPubMed
51.
go back to reference Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.CrossRefPubMed Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.CrossRefPubMed
52.
go back to reference Teh WT, Stern C, Chander S, Hickey M. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res Int. 2014;2014:482968.PubMedPubMedCentralCrossRef Teh WT, Stern C, Chander S, Hickey M. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res Int. 2014;2014:482968.PubMedPubMedCentralCrossRef
53.
go back to reference Dehghan T, Mozdarani H, Khoradmehr A, Kalantar SM. Effects of gamma radiation on fetal development in mice. Int J Reprod Biomed (Yazd). 2016;14(4):247–54.CrossRef Dehghan T, Mozdarani H, Khoradmehr A, Kalantar SM. Effects of gamma radiation on fetal development in mice. Int J Reprod Biomed (Yazd). 2016;14(4):247–54.CrossRef
54.
go back to reference Larsen EC, Müller J, Schmiegelow K, Rechnitzer C, Andersen AN. Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab. 2003;88(11):5307–14.PubMedCrossRef Larsen EC, Müller J, Schmiegelow K, Rechnitzer C, Andersen AN. Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab. 2003;88(11):5307–14.PubMedCrossRef
57.
go back to reference Cohen LE. Cancer treatment and the ovary: the effects of chemotherapy and radiation. Ann N Y Acad Sci. 2008;1135:123–5.PubMedCrossRef Cohen LE. Cancer treatment and the ovary: the effects of chemotherapy and radiation. Ann N Y Acad Sci. 2008;1135:123–5.PubMedCrossRef
58.
go back to reference Winther JF, JDJr B, Svendsen AL, Frederiksen K, Stovall M, Olsen JH. Spontaneous abortion in a Danish population-based cohort of childhood cancer survivors. J Clin Oncol. 2008;26:4340–6.PubMedPubMedCentralCrossRef Winther JF, JDJr B, Svendsen AL, Frederiksen K, Stovall M, Olsen JH. Spontaneous abortion in a Danish population-based cohort of childhood cancer survivors. J Clin Oncol. 2008;26:4340–6.PubMedPubMedCentralCrossRef
59.
go back to reference Norwitz ER, Stern HM, Grier H, Lee-Parritz A. Placenta percreta and uterine rupture associated with prior whole body radiation therapy. Obstet Gynecol. 2001;98:929–31.PubMed Norwitz ER, Stern HM, Grier H, Lee-Parritz A. Placenta percreta and uterine rupture associated with prior whole body radiation therapy. Obstet Gynecol. 2001;98:929–31.PubMed
60.
go back to reference Mueller BA, Chow EJ, Kamineni A, Daling JR, Fraser A, Wiggins CL, Mineau GP, et al. Pregnancy outcomes in female childhood and adolescent cancer survivors: a linked cancer-birth registry analysis. Arch Pediatr Adolesc Med. 2009;163(10):879–86.PubMedPubMedCentralCrossRef Mueller BA, Chow EJ, Kamineni A, Daling JR, Fraser A, Wiggins CL, Mineau GP, et al. Pregnancy outcomes in female childhood and adolescent cancer survivors: a linked cancer-birth registry analysis. Arch Pediatr Adolesc Med. 2009;163(10):879–86.PubMedPubMedCentralCrossRef
61.
go back to reference Chiarelli AM, Marrett LD, Darlington GA. Pregnancy outcomes in females after treatment for childhood cancer. Epidemiology. 2000;11(2):161–6.PubMedCrossRef Chiarelli AM, Marrett LD, Darlington GA. Pregnancy outcomes in females after treatment for childhood cancer. Epidemiology. 2000;11(2):161–6.PubMedCrossRef
62.
go back to reference Signorello LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst. 2006;98(20):1453–61.PubMedCrossRef Signorello LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst. 2006;98(20):1453–61.PubMedCrossRef
63.
go back to reference Reulen RC, Zeegers MP, Wallace WH, Frobisher C, Taylor AJ, Lancashire ER, Winter DL, et al. Pregnancy outcomes among adult survivors of childhood cancer in the British childhood Cancer survivor study. Cancer Epidemiol Biomark Prev. 2009;18(8):2239–47.CrossRef Reulen RC, Zeegers MP, Wallace WH, Frobisher C, Taylor AJ, Lancashire ER, Winter DL, et al. Pregnancy outcomes among adult survivors of childhood cancer in the British childhood Cancer survivor study. Cancer Epidemiol Biomark Prev. 2009;18(8):2239–47.CrossRef
64.
go back to reference Green DM, Whitton JA, Stovall M, Mertens AC, Donaldson SS, Ruymann FB, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the childhood Cancer survivor study. Am J Obstet Gynecol. 2002;187(4):1070–80.PubMedCrossRef Green DM, Whitton JA, Stovall M, Mertens AC, Donaldson SS, Ruymann FB, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the childhood Cancer survivor study. Am J Obstet Gynecol. 2002;187(4):1070–80.PubMedCrossRef
65.
go back to reference D'Angio GJ, Breslow N, Beckwith JB, Evans A, Baum H, deLorimier A, et al. Treatment of Wilms' tumor. Results of the third National Wilms' tumor study. Cancer. 1989;64(2):349–60.PubMedCrossRef D'Angio GJ, Breslow N, Beckwith JB, Evans A, Baum H, deLorimier A, et al. Treatment of Wilms' tumor. Results of the third National Wilms' tumor study. Cancer. 1989;64(2):349–60.PubMedCrossRef
66.
go back to reference D'Angio GJ, Evans A, Breslow N, Beckwith B, Bishop H, Farewell V, et al. The treatment of Wilms' tumor: results of the second National Wilms' tumor study. Cancer. 1981;47(9):2302–11.PubMedCrossRef D'Angio GJ, Evans A, Breslow N, Beckwith B, Bishop H, Farewell V, et al. The treatment of Wilms' tumor: results of the second National Wilms' tumor study. Cancer. 1981;47(9):2302–11.PubMedCrossRef
67.
go back to reference Green DM, Fine WE, Li FP. Offspring of patients treated for unilateral Wilms' tumor in childhood. Cancer. 1982;49(11):2285–8.PubMedCrossRef Green DM, Fine WE, Li FP. Offspring of patients treated for unilateral Wilms' tumor in childhood. Cancer. 1982;49(11):2285–8.PubMedCrossRef
68.
go back to reference Hawkins MM, Smith RA. Pregnancy outcomes in childhood cancer survivors: probable effects of abdominal irradiation. Int J Cancer. 1989;43(3):399–402.PubMedCrossRef Hawkins MM, Smith RA. Pregnancy outcomes in childhood cancer survivors: probable effects of abdominal irradiation. Int J Cancer. 1989;43(3):399–402.PubMedCrossRef
69.
go back to reference Hawkins MM, Winter DL, Burton HS, Potok MH. Heritability of Wilms' tumor. J Natl Cancer Inst. 1995;87(17):1323–4.PubMedCrossRef Hawkins MM, Winter DL, Burton HS, Potok MH. Heritability of Wilms' tumor. J Natl Cancer Inst. 1995;87(17):1323–4.PubMedCrossRef
70.
go back to reference Sankila R, Olsen JH, Anderson H, Garwicz S, Glattre E, Hertz H, et al. Risk of cancer among offspring of childhood-cancer survivors. Association of the Nordic Cancer Registries and the Nordic Society of Paediatric Haematology and Oncology. N Engl J Med. 1998;338(19):1339–44.PubMedCrossRef Sankila R, Olsen JH, Anderson H, Garwicz S, Glattre E, Hertz H, et al. Risk of cancer among offspring of childhood-cancer survivors. Association of the Nordic Cancer Registries and the Nordic Society of Paediatric Haematology and Oncology. N Engl J Med. 1998;338(19):1339–44.PubMedCrossRef
71.
go back to reference Green DM, Lange JM, Peabody EM, Grigorieva NN, Peterson SM, Kalapurakal JA, et al. Pregnancy outcome after treatment for Wilms tumor: a report from the National Wilms Tumor Long-Term Follow-up Study. J Clin Oncol. 2010;28(17):2824–30.PubMedPubMedCentralCrossRef Green DM, Lange JM, Peabody EM, Grigorieva NN, Peterson SM, Kalapurakal JA, et al. Pregnancy outcome after treatment for Wilms tumor: a report from the National Wilms Tumor Long-Term Follow-up Study. J Clin Oncol. 2010;28(17):2824–30.PubMedPubMedCentralCrossRef
72.
go back to reference Viswanathan V, Pradhan KR, Eugster EA. Pituitary hormone dysfunction after proton beam radiation therapy in children with brain tumors. Endocr Pract. 2011;17(6):891–6.PubMedPubMedCentralCrossRef Viswanathan V, Pradhan KR, Eugster EA. Pituitary hormone dysfunction after proton beam radiation therapy in children with brain tumors. Endocr Pract. 2011;17(6):891–6.PubMedPubMedCentralCrossRef
73.
go back to reference Goodwin T, Delasobera BE, Fisher PG. Reproductive health issues in survivors of childhood and adult brain tumors. Cancer Treat Res. 2009;150:215–22. Goodwin T, Delasobera BE, Fisher PG. Reproductive health issues in survivors of childhood and adult brain tumors. Cancer Treat Res. 2009;150:215–22.
74.
go back to reference Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76:S20–7.PubMedPubMedCentralCrossRef Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76:S20–7.PubMedPubMedCentralCrossRef
75.
go back to reference Crowne E, Gleeson H, Benghiat H, Sanghera P, Toogood A. Effect of cancer treatment on hypothalamic-pituitary function. Lancet Diabetes Endocrinol. 2015;3(7):568–76.PubMedCrossRef Crowne E, Gleeson H, Benghiat H, Sanghera P, Toogood A. Effect of cancer treatment on hypothalamic-pituitary function. Lancet Diabetes Endocrinol. 2015;3(7):568–76.PubMedCrossRef
77.
go back to reference Chieng PU, Huang TS, Chang CC, Chong PN, Tien RD, Su CT. Reduced hypothalamic blood flow after radiation treatment of nasopharyngeal cancer: SPECT studies in 34 patients. Am J Neuroradiol. 1991;12:661–5.PubMedPubMedCentral Chieng PU, Huang TS, Chang CC, Chong PN, Tien RD, Su CT. Reduced hypothalamic blood flow after radiation treatment of nasopharyngeal cancer: SPECT studies in 34 patients. Am J Neuroradiol. 1991;12:661–5.PubMedPubMedCentral
78.
go back to reference Littley MD, Shalet SM, Beardwell CG, Robinson EL, Sutton ML. Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol. 1989;31:363–73.CrossRef Littley MD, Shalet SM, Beardwell CG, Robinson EL, Sutton ML. Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol. 1989;31:363–73.CrossRef
79.
go back to reference Hochberg Z, Kuten A, Hertz P, Tatcher M, Kedar A, Benderly A. The effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells. Radiat Res. 1983;94:508–12.PubMedCrossRef Hochberg Z, Kuten A, Hertz P, Tatcher M, Kedar A, Benderly A. The effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells. Radiat Res. 1983;94:508–12.PubMedCrossRef
80.
go back to reference Robinson IC, Fairhall KM, Hendry JH, Shalet SM. Differential radiosensitivity of hypothalamopituitary function in the young adult rat. J Endocrinol. 2001;169:519–26.PubMedCrossRef Robinson IC, Fairhall KM, Hendry JH, Shalet SM. Differential radiosensitivity of hypothalamopituitary function in the young adult rat. J Endocrinol. 2001;169:519–26.PubMedCrossRef
81.
go back to reference Clayton PE, Shalet SM. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr. 1991;118:226–8.PubMedCrossRef Clayton PE, Shalet SM. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr. 1991;118:226–8.PubMedCrossRef
82.
go back to reference Schmiegelow M, Lassen S, Poulsen HS, Feldt-Rasmussen U, Schmiegelow K, Hertz H, et al. Cranial radiotherapy of childhood brain tumours: growth hormone deficiency and its relation to the biological effective dose of irradiation in a large population based study. Clin Endocrinol. 2000;53:191–7.CrossRef Schmiegelow M, Lassen S, Poulsen HS, Feldt-Rasmussen U, Schmiegelow K, Hertz H, et al. Cranial radiotherapy of childhood brain tumours: growth hormone deficiency and its relation to the biological effective dose of irradiation in a large population based study. Clin Endocrinol. 2000;53:191–7.CrossRef
83.
go back to reference Spoudeas HA, Hindmarsh PC, Matthews DR, Brook CG. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol. 1996;150:329–42.PubMedCrossRef Spoudeas HA, Hindmarsh PC, Matthews DR, Brook CG. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol. 1996;150:329–42.PubMedCrossRef
84.
go back to reference Duffner PK, Cohen ME, Voorhess ML, MacGillivray MH, Brecher ML, Panahon A, et al. Long-term effects of cranial irradiation on endocrine function in children with brain tumors. A prospective study. Cancer. 1985;56:2189–93.PubMedCrossRef Duffner PK, Cohen ME, Voorhess ML, MacGillivray MH, Brecher ML, Panahon A, et al. Long-term effects of cranial irradiation on endocrine function in children with brain tumors. A prospective study. Cancer. 1985;56:2189–93.PubMedCrossRef
85.
go back to reference Lam KSL, Tse VKC, Wang C, Yeung RTT, Ho JHC. Effects of cranial irradiation on hypothalamic-pituitary function-a 5-year longitudinal study in patients with nasopharyngeal carcinoma. Q J Med. 1991;78:165–76.PubMed Lam KSL, Tse VKC, Wang C, Yeung RTT, Ho JHC. Effects of cranial irradiation on hypothalamic-pituitary function-a 5-year longitudinal study in patients with nasopharyngeal carcinoma. Q J Med. 1991;78:165–76.PubMed
86.
87.
go back to reference Veldhuis JD. The hypothalamic pulse generator: the reproductive core. Clin Obstet Gynecol. 1990;33(3):538–50.PubMedCrossRef Veldhuis JD. The hypothalamic pulse generator: the reproductive core. Clin Obstet Gynecol. 1990;33(3):538–50.PubMedCrossRef
88.
go back to reference Roth C, Schmidberger H, Schaper O, Leonhardt S, Lakomek M, Wuttke W, et al. Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res. 2000;47:586–91.PubMedCrossRef Roth C, Schmidberger H, Schaper O, Leonhardt S, Lakomek M, Wuttke W, et al. Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res. 2000;47:586–91.PubMedCrossRef
89.
go back to reference Roth C, Lakomek M, Schmidberger H, Jarry H. Cranial irradiation induces premature activation of the gonadotropin-releasing-hormone (in German). Klin Pediatr. 2001;213:239–43.CrossRef Roth C, Lakomek M, Schmidberger H, Jarry H. Cranial irradiation induces premature activation of the gonadotropin-releasing-hormone (in German). Klin Pediatr. 2001;213:239–43.CrossRef
90.
go back to reference Ogilvy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab. 1994;78:1282–6.PubMed Ogilvy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab. 1994;78:1282–6.PubMed
91.
go back to reference Lannering B, Jansson C, Rosberg S, Albertsson-Wikland K. Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol. 1997;29:280–7.PubMedCrossRef Lannering B, Jansson C, Rosberg S, Albertsson-Wikland K. Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol. 1997;29:280–7.PubMedCrossRef
92.
go back to reference Rappaport R, Brauner R, Czernichow P, Thibaud E, Renier D, Zucker JM, et al. Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab. 1982;54:1164–8.PubMedCrossRef Rappaport R, Brauner R, Czernichow P, Thibaud E, Renier D, Zucker JM, et al. Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J Clin Endocrinol Metab. 1982;54:1164–8.PubMedCrossRef
93.
go back to reference Hirshfeld-Cytron J, Kim HH. Treatment of infertility in women with pituitary tumors. Expert Rev Anticancer Ther. 2006;6:S55–62.PubMedCrossRef Hirshfeld-Cytron J, Kim HH. Treatment of infertility in women with pituitary tumors. Expert Rev Anticancer Ther. 2006;6:S55–62.PubMedCrossRef
94.
go back to reference Koustenis E, Pfitzer C, Balcerek M, Reinmuth S, Zynda A, Stromberger C, et al. Impact of cranial irradiation and brain tumor location on fertility: a survey. Klin Padiatr. 2013;225(6):320–4.PubMedCrossRef Koustenis E, Pfitzer C, Balcerek M, Reinmuth S, Zynda A, Stromberger C, et al. Impact of cranial irradiation and brain tumor location on fertility: a survey. Klin Padiatr. 2013;225(6):320–4.PubMedCrossRef
95.
go back to reference Soave I, Lo Monte G, Giugliano E, Graziano A, Marci R. Preserving fertility in female cancer patients: a snapshot of the options. Cleve Clin J Med. 2013;80(5):309–17.PubMedCrossRef Soave I, Lo Monte G, Giugliano E, Graziano A, Marci R. Preserving fertility in female cancer patients: a snapshot of the options. Cleve Clin J Med. 2013;80(5):309–17.PubMedCrossRef
96.
go back to reference Linkeviciute A, Boniolo G, Chiavari L, Peccatori FA. Fertility preservation in cancer patients: the global framework. Cancer Treat Rev. 2014;40(8):1019–27.PubMedCrossRef Linkeviciute A, Boniolo G, Chiavari L, Peccatori FA. Fertility preservation in cancer patients: the global framework. Cancer Treat Rev. 2014;40(8):1019–27.PubMedCrossRef
97.
go back to reference Clough KB, Goffinet F, Labib A, Renolleau C, Campana F, de la Rochefordiere A, et al. Laparoscopic unilateral ovarian transposition prior to irradiation: prospective study of 20 cases. Cancer. 1996;77:2638–45.PubMedCrossRef Clough KB, Goffinet F, Labib A, Renolleau C, Campana F, de la Rochefordiere A, et al. Laparoscopic unilateral ovarian transposition prior to irradiation: prospective study of 20 cases. Cancer. 1996;77:2638–45.PubMedCrossRef
98.
go back to reference Mossa B, Schimberni M, Di Benedetto L, Mossa S. Ovarian transposition in young women and fertility sparing. Eur Rev Med Pharmacol Sci. 2015;19(18):3418–25.PubMed Mossa B, Schimberni M, Di Benedetto L, Mossa S. Ovarian transposition in young women and fertility sparing. Eur Rev Med Pharmacol Sci. 2015;19(18):3418–25.PubMed
99.
go back to reference Arian SE, Goodman L, Flyckt RL, Falcone T. Ovarian transposition: a surgical option for fertility preservation. Fertil Steril. 2017;107(4):e15.PubMedCrossRef Arian SE, Goodman L, Flyckt RL, Falcone T. Ovarian transposition: a surgical option for fertility preservation. Fertil Steril. 2017;107(4):e15.PubMedCrossRef
100.
go back to reference Hwang JH, Yoo HJ, Park SH, Lim MC, Seo SS, Kang S, et al. Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy. Fertil Steril. 2012;97:1387–93.PubMedCrossRef Hwang JH, Yoo HJ, Park SH, Lim MC, Seo SS, Kang S, et al. Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy. Fertil Steril. 2012;97:1387–93.PubMedCrossRef
101.
go back to reference Terenziani M, Piva L, Meazza C, Gandola L, Cefalo G, Merola M. Oophoropexy: a relevant role in preservation of ovarian function after pelvic irradiation. Fertil Steril. 2009;91:935.e15–6.CrossRef Terenziani M, Piva L, Meazza C, Gandola L, Cefalo G, Merola M. Oophoropexy: a relevant role in preservation of ovarian function after pelvic irradiation. Fertil Steril. 2009;91:935.e15–6.CrossRef
102.
go back to reference Goldberg JM, Falcone T, Attaran M. In vitro fertilization update. Cleve Clin J Med. 2007;74:329–38.PubMedCrossRef Goldberg JM, Falcone T, Attaran M. In vitro fertilization update. Cleve Clin J Med. 2007;74:329–38.PubMedCrossRef
103.
go back to reference Prest SJ, May FE, Westley BR. The estrogen-regulated protein, TFF1, stimulates migration of human breast cancer cells. FASEB J. 2002;6:592–4.CrossRef Prest SJ, May FE, Westley BR. The estrogen-regulated protein, TFF1, stimulates migration of human breast cancer cells. FASEB J. 2002;6:592–4.CrossRef
104.
go back to reference Herrington J, Carter-Su C. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab. 2001;12:252–7.PubMedCrossRef Herrington J, Carter-Su C. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab. 2001;12:252–7.PubMedCrossRef
105.
go back to reference Mahran YF, El-Demerdash E, Nada AS, El-Naga RN, Ali AA, Abdel-Naim AB. Growth hormone ameliorates the radiotherapy-induced ovarian follicular loss in rats: impact on oxidative stress, apoptosis and IGF-1/IGF-1R Axis. PLoS One. 2015;10(10):e0140055.PubMedPubMedCentralCrossRef Mahran YF, El-Demerdash E, Nada AS, El-Naga RN, Ali AA, Abdel-Naim AB. Growth hormone ameliorates the radiotherapy-induced ovarian follicular loss in rats: impact on oxidative stress, apoptosis and IGF-1/IGF-1R Axis. PLoS One. 2015;10(10):e0140055.PubMedPubMedCentralCrossRef
106.
go back to reference Bondy CA, Zhou J, Arraztoa JA. Growth Hormone, Insulin-Like Growth Factors, and the Ovary. In: Wassarman P, Neill JD, EL Sevier. Knobil and Neill's physiology of reproduction London:2005. p. 527–540. Bondy CA, Zhou J, Arraztoa JA. Growth Hormone, Insulin-Like Growth Factors, and the Ovary. In: Wassarman P, Neill JD, EL Sevier. Knobil and Neill's physiology of reproduction London:2005. p. 527–540.
107.
go back to reference Homburg R, Ostergard H. Clinical applications of growth hormone for ovarian stimulation. Hum Reprod Update. 1995;1:264–75.PubMedCrossRef Homburg R, Ostergard H. Clinical applications of growth hormone for ovarian stimulation. Hum Reprod Update. 1995;1:264–75.PubMedCrossRef
108.
go back to reference Kucuk K, Kozinoglu H, Ayten K. Growth hormone co-treatment within a GnRH agonist long protocol in patients with poor ovarian response: a prospective, randomized, clinical trial. J Assist Reprod Genet. 2008;25(4):123–7.PubMedPubMedCentralCrossRef Kucuk K, Kozinoglu H, Ayten K. Growth hormone co-treatment within a GnRH agonist long protocol in patients with poor ovarian response: a prospective, randomized, clinical trial. J Assist Reprod Genet. 2008;25(4):123–7.PubMedPubMedCentralCrossRef
109.
go back to reference de Boer JA, Schoemaker J, van der Veen EA. Impaired reproductive function in women treated for growth hormone deficiency during childhood. Clin Endocrinol. 1997;46(6):681–9.CrossRef de Boer JA, Schoemaker J, van der Veen EA. Impaired reproductive function in women treated for growth hormone deficiency during childhood. Clin Endocrinol. 1997;46(6):681–9.CrossRef
110.
go back to reference Baeza I, Fdez-Tresguerres J, Ariznavarreta C, De la Fuente M. Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology. 2010;11:687–701.PubMedCrossRef Baeza I, Fdez-Tresguerres J, Ariznavarreta C, De la Fuente M. Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology. 2010;11:687–701.PubMedCrossRef
111.
go back to reference Pavone ME, Confino R, Steinberg M. Female fertility preservation: a clinical perspective. Minerva Ginecol. 2016;68(4):458–65.PubMedPubMedCentral Pavone ME, Confino R, Steinberg M. Female fertility preservation: a clinical perspective. Minerva Ginecol. 2016;68(4):458–65.PubMedPubMedCentral
112.
go back to reference Noyes N, Knopman JM, Melzer K, Fino ME, Friedman B, Westphal LM. Oocyte cryopreservation as a fertility preservation measure for cancer patients. Reprod BioMed Online. 2011;23(3):323–33.PubMedCrossRef Noyes N, Knopman JM, Melzer K, Fino ME, Friedman B, Westphal LM. Oocyte cryopreservation as a fertility preservation measure for cancer patients. Reprod BioMed Online. 2011;23(3):323–33.PubMedCrossRef
113.
go back to reference Fadini R, Brambillasca F, Renzini MM, Merola M, Comi R, De Ponti E, et al. Human oocyte cryopreservation: comparison between slow and ultrarapid methods. Reprod BioMed Online. 2009;19(2):171–80.PubMedCrossRef Fadini R, Brambillasca F, Renzini MM, Merola M, Comi R, De Ponti E, et al. Human oocyte cryopreservation: comparison between slow and ultrarapid methods. Reprod BioMed Online. 2009;19(2):171–80.PubMedCrossRef
114.
go back to reference Batuhan O, Safaa AH. Techniques for ovarian tissue, whole ovary, oocyte and embryo cryopreservation. J Reprod Infertil. 2010;11(1):3–15.PubMed Batuhan O, Safaa AH. Techniques for ovarian tissue, whole ovary, oocyte and embryo cryopreservation. J Reprod Infertil. 2010;11(1):3–15.PubMed
116.
117.
go back to reference Cakmak H, Katz A, Cedars MI, Rosen MP. Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertil Steril. 2013;100(6):1673–80.PubMedCrossRef Cakmak H, Katz A, Cedars MI, Rosen MP. Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertil Steril. 2013;100(6):1673–80.PubMedCrossRef
118.
go back to reference Cao Y, Xing Q, Zhang ZG, Wei ZL, Zhou P, Cong L. Cryopreservation of immature and in vitro-matured human oocytes by vitrification. Reprod BioMed Online. 2009;19:369–73.PubMedCrossRef Cao Y, Xing Q, Zhang ZG, Wei ZL, Zhou P, Cong L. Cryopreservation of immature and in vitro-matured human oocytes by vitrification. Reprod BioMed Online. 2009;19:369–73.PubMedCrossRef
119.
go back to reference Toth TL, Baka SG, Veeck LL, Jones HW Jr, Muasher S, Lanzendorf SE. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril. 1994;61:891–4.PubMedCrossRef Toth TL, Baka SG, Veeck LL, Jones HW Jr, Muasher S, Lanzendorf SE. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril. 1994;61:891–4.PubMedCrossRef
120.
go back to reference Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A. Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril. 2011;95:64–7.PubMedCrossRef Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A. Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril. 2011;95:64–7.PubMedCrossRef
121.
go back to reference Oktay K, Demirtas E, Son WY, Lostritto K, Chian RC, Tan SL. In vitro maturation of germinal vesicle oocytes recovered after premature luteinizing hormone surge: description of a novel approach to fertility preservation. Fertil Steril. 2008;89:228.e19–22.CrossRef Oktay K, Demirtas E, Son WY, Lostritto K, Chian RC, Tan SL. In vitro maturation of germinal vesicle oocytes recovered after premature luteinizing hormone surge: description of a novel approach to fertility preservation. Fertil Steril. 2008;89:228.e19–22.CrossRef
122.
go back to reference Walls ML, Douglas K, Ryan JP, Tan J, Hart R. In-vitro maturation and cryopreservation of oocytes at the time of oophorectomy. Gynecol Oncol Rep. 2015;13:79–81.PubMedPubMedCentralCrossRef Walls ML, Douglas K, Ryan JP, Tan J, Hart R. In-vitro maturation and cryopreservation of oocytes at the time of oophorectomy. Gynecol Oncol Rep. 2015;13:79–81.PubMedPubMedCentralCrossRef
124.
go back to reference Martinez-Madrid B, Dolmans MM, Van Langendonckt A, Defrère S, Donnez J. Freeze-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.PubMedCrossRef Martinez-Madrid B, Dolmans MM, Van Langendonckt A, Defrère S, Donnez J. Freeze-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.PubMedCrossRef
125.
go back to reference Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Ovarian tissue and oocyte cryopreservation. Fertil Steril. 2008;90:S241–6. Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Ovarian tissue and oocyte cryopreservation. Fertil Steril. 2008;90:S241–6.
126.
go back to reference Oktay K. Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Update. 2001;7:526–34.PubMedCrossRef Oktay K. Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Update. 2001;7:526–34.PubMedCrossRef
127.
go back to reference Donnez J, Jadoul P, Squifflet J, Van Langendonckt A, Donnez O, Van Eyck AS, et al. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):87–100.PubMedCrossRef Donnez J, Jadoul P, Squifflet J, Van Langendonckt A, Donnez O, Van Eyck AS, et al. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):87–100.PubMedCrossRef
128.
go back to reference Morris SN, Ryley D. Fertility preservation: nonsurgical and surgical options. Semin Reprod Med. 2011;29(2):147–54.PubMedCrossRef Morris SN, Ryley D. Fertility preservation: nonsurgical and surgical options. Semin Reprod Med. 2011;29(2):147–54.PubMedCrossRef
129.
go back to reference Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.PubMedCrossRef Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.PubMedCrossRef
130.
go back to reference Rodriguez-Wallberg KA, Karlström PO, Rezapour M, Castellanos E, Hreinsson J, Rasmussen C, et al. Full-term newborn after repeated ovarian tissue transplants in a patient treated for Ewing sarcoma by sterilizing pelvic irradiation and chemotherapy. Acta Obstet Gynecol Scand. 2015;94(3):324–8.PubMedPubMedCentralCrossRef Rodriguez-Wallberg KA, Karlström PO, Rezapour M, Castellanos E, Hreinsson J, Rasmussen C, et al. Full-term newborn after repeated ovarian tissue transplants in a patient treated for Ewing sarcoma by sterilizing pelvic irradiation and chemotherapy. Acta Obstet Gynecol Scand. 2015;94(3):324–8.PubMedPubMedCentralCrossRef
131.
go back to reference Stern CJ, Gook D, Hale LG, Agresta F, Oldham J, Rozen G, et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod. 2013;28(11):2996–9.PubMedCrossRef Stern CJ, Gook D, Hale LG, Agresta F, Oldham J, Rozen G, et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod. 2013;28(11):2996–9.PubMedCrossRef
132.
go back to reference Kim SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet. 2012;29(6):489–93.PubMedPubMedCentralCrossRef Kim SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet. 2012;29(6):489–93.PubMedPubMedCentralCrossRef
133.
go back to reference Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43:437–50.PubMedCrossRef Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43:437–50.PubMedCrossRef
135.
136.
go back to reference Fazeli Z, Omrani MD, Ghaderian SM. CD29/ CD184 expression analysis provides a signature for identification of neuronal like cells differentiated from PBMSCs. Neurosci Lett. 2016;630:189–93.PubMedCrossRef Fazeli Z, Omrani MD, Ghaderian SM. CD29/ CD184 expression analysis provides a signature for identification of neuronal like cells differentiated from PBMSCs. Neurosci Lett. 2016;630:189–93.PubMedCrossRef
137.
go back to reference Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59.PubMedCrossRef Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59.PubMedCrossRef
138.
go back to reference da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.PubMedCrossRef da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.PubMedCrossRef
139.
go back to reference Fazeli Z, Rajabibazl M, Salami S, Vazifeh Shiran N, Ghaderian SMH, Omrani MD. Gene expression profile of adherent cells derived from human peripheral blood: evidence of mesenchymal stem cells. J Sci Islam Repub Iran. 2016;27(2):105–12. Fazeli Z, Rajabibazl M, Salami S, Vazifeh Shiran N, Ghaderian SMH, Omrani MD. Gene expression profile of adherent cells derived from human peripheral blood: evidence of mesenchymal stem cells. J Sci Islam Repub Iran. 2016;27(2):105–12.
140.
go back to reference Chikhovskaya JV, Jonker MJ, Meissner A, Breit TM, Repping S, van Pelt AM. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod. 2012;27(1):210–21.PubMedCrossRef Chikhovskaya JV, Jonker MJ, Meissner A, Breit TM, Repping S, van Pelt AM. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod. 2012;27(1):210–21.PubMedCrossRef
141.
go back to reference Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell Transplant. 2016;25(5):849–61.PubMedCrossRef Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell Transplant. 2016;25(5):849–61.PubMedCrossRef
142.
go back to reference Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Rev. 2018;14(1):1–12.CrossRef Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Rev. 2018;14(1):1–12.CrossRef
143.
go back to reference Eppig JJ, O'Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54:197–207.PubMedCrossRef Eppig JJ, O'Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54:197–207.PubMedCrossRef
144.
go back to reference O'Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68:1682–6.PubMedCrossRef O'Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68:1682–6.PubMedCrossRef
145.
go back to reference Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod. 2008;23:1151–8.PubMedCrossRef Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod. 2008;23:1151–8.PubMedCrossRef
146.
147.
go back to reference Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24:2531–40.PubMedPubMedCentralCrossRef Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24:2531–40.PubMedPubMedCentralCrossRef
Metadata
Title
Radiations and female fertility
Authors
Roberto Marci
Maddalena Mallozzi
Luisa Di Benedetto
Mauro Schimberni
Stefano Mossa
Ilaria Soave
Stefano Palomba
Donatella Caserta
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2018
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-018-0432-0

Other articles of this Issue 1/2018

Reproductive Biology and Endocrinology 1/2018 Go to the issue