Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Radiation Treatment Planning | Research

A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation

Authors: Sebastian Marschner, Manasi Datar, Aurélie Gaasch, Zhoubing Xu, Sasa Grbic, Guillaume Chabin, Bernhard Geiger, Julian Rosenman, Stefanie Corradini, Maximilian Niyazi, Tobias Heimann, Christian Möhler, Fernando Vega, Claus Belka, Christian Thieke

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

We describe and evaluate a deep network algorithm which automatically contours organs at risk in the thorax and pelvis on computed tomography (CT) images for radiation treatment planning.

Methods

The algorithm identifies the region of interest (ROI) automatically by detecting anatomical landmarks around the specific organs using a deep reinforcement learning technique. The segmentation is restricted to this ROI and performed by a deep image-to-image network (DI2IN) based on a convolutional encoder-decoder architecture combined with multi-level feature concatenation. The algorithm is commercially available in the medical products “syngo.via RT Image Suite VB50” and “AI-Rad Companion Organs RT VA20” (Siemens Healthineers). For evaluation, thoracic CT images of 237 patients and pelvic CT images of 102 patients were manually contoured following the Radiation Therapy Oncology Group (RTOG) guidelines and compared to the DI2IN results using metrics for volume, overlap and distance, e.g., Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD95). The contours were also compared visually slice by slice.

Results

We observed high correlations between automatic and manual contours. The best results were obtained for the lungs (DSC 0.97, HD95 2.7 mm/2.9 mm for left/right lung), followed by heart (DSC 0.92, HD95 4.4 mm), bladder (DSC 0.88, HD95 6.7 mm) and rectum (DSC 0.79, HD95 10.8 mm). Visual inspection showed excellent agreements with some exceptions for heart and rectum.

Conclusions

The DI2IN algorithm automatically generated contours for organs at risk close to those by a human expert, making the contouring step in radiation treatment planning simpler and faster. Few cases still required manual corrections, mainly for heart and rectum.
Literature
1.
go back to reference Nikolov S, Blackwell S, Mendes R, Fauw JD, Meyer C, Hughes C, et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018:1–31. Nikolov S, Blackwell S, Mendes R, Fauw JD, Meyer C, Hughes C, et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018:1–31.
2.
go back to reference van der Heyden B, Wohlfahrt P, Eekers DBP, Richter C, Terhaag K, Troost EGC, et al. Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach. Sci Rep. 2019;9:4126.CrossRef van der Heyden B, Wohlfahrt P, Eekers DBP, Richter C, Terhaag K, Troost EGC, et al. Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach. Sci Rep. 2019;9:4126.CrossRef
3.
go back to reference Zhu W, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys. 2019;46:576–89.CrossRef Zhu W, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, et al. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys. 2019;46:576–89.CrossRef
4.
go back to reference Lim JY, Leech M. Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck. Acta Oncol. 2016;55:799–806.CrossRef Lim JY, Leech M. Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck. Acta Oncol. 2016;55:799–806.CrossRef
5.
go back to reference Feng M, Valdes G, Dixit N, Solberg TD. Machine learning in radiation oncology: opportunities, requirements, and needs. Front Oncol. 2018;8:110.CrossRef Feng M, Valdes G, Dixit N, Solberg TD. Machine learning in radiation oncology: opportunities, requirements, and needs. Front Oncol. 2018;8:110.CrossRef
6.
go back to reference Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015;p. 234–41. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015;p. 234–41.
7.
go back to reference Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys. 2017;44:547–57.CrossRef Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys. 2017;44:547–57.CrossRef
8.
go back to reference Kearney V, Chan JW, Valdes G, Solberg TD, Yom SS. The application of artificial intelligence in the IMRT planning process for head and neck cancer. Oral Oncol. 2018;87:111–6.CrossRef Kearney V, Chan JW, Valdes G, Solberg TD, Yom SS. The application of artificial intelligence in the IMRT planning process for head and neck cancer. Oral Oncol. 2018;87:111–6.CrossRef
9.
go back to reference Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, et al. Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans Pattern Anal Mach Intell. 2019;41:176–89.CrossRef Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, et al. Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans Pattern Anal Mach Intell. 2019;41:176–89.CrossRef
10.
go back to reference Yang D, DX, Zhou SK, Bogdan G, Mingqing C, Sasa G, et al. Automatic liver segmentation using an adversarial image-to-image network. Springer, Cham, 2017. Yang D, DX, Zhou SK, Bogdan G, Mingqing C, Sasa G, et al. Automatic liver segmentation using an adversarial image-to-image network. Springer, Cham, 2017.
11.
go back to reference Kingma DP, Ba J. Adam. A method for stochastic optimization. 2014;p. 1–15. Kingma DP, Ba J. Adam. A method for stochastic optimization. 2014;p. 1–15.
12.
go back to reference Julia White AT, Douglas A, Thomas B, Shannon M, Lawrence M, Lori P, Abraham Recht RR, Alphonse T, Frank V, Wendy W, Allen Li X. Breast cancer atlas for radiation therapy planning: consensus definitions. RTOG - Radiation Therapy Oncology Group. Julia White AT, Douglas A, Thomas B, Shannon M, Lawrence M, Lori P, Abraham Recht RR, Alphonse T, Frank V, Wendy W, Allen Li X. Breast cancer atlas for radiation therapy planning: consensus definitions. RTOG - Radiation Therapy Oncology Group.
13.
go back to reference Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353-62.CrossRef Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353-62.CrossRef
14.
go back to reference Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, Veeraraghavan H, et al. Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys. 2014;41:050902.CrossRef Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, Veeraraghavan H, et al. Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys. 2014;41:050902.CrossRef
15.
go back to reference van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys. 2007;68:771–8.CrossRef van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys. 2007;68:771–8.CrossRef
16.
go back to reference Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume delineations independent of the number of observers. Physics in Medicine and Biology. 2009;54:2863–73.CrossRef Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume delineations independent of the number of observers. Physics in Medicine and Biology. 2009;54:2863–73.CrossRef
17.
go back to reference Lorenzen EL, Taylor CW, Maraldo M, Nielsen MH, Offersen BV, Andersen MR, et al. Inter-observer variation in delineation of the heart and left anterior descending coronary artery in radiotherapy for breast cancer: a multi-centre study from Denmark and the UK. Radiother Oncol. 2013;108:254–8.CrossRef Lorenzen EL, Taylor CW, Maraldo M, Nielsen MH, Offersen BV, Andersen MR, et al. Inter-observer variation in delineation of the heart and left anterior descending coronary artery in radiotherapy for breast cancer: a multi-centre study from Denmark and the UK. Radiother Oncol. 2013;108:254–8.CrossRef
18.
go back to reference Kepka L, Bujko K, Garmol D, Palucki J, Zolciak-Siwinska A, Guzel-Szczepiorkowska Z, et al. Delineation variation of lymph node stations for treatment planning in lung cancer radiotherapy. Radiotherapy and Oncology. 2007;85:450–5.CrossRef Kepka L, Bujko K, Garmol D, Palucki J, Zolciak-Siwinska A, Guzel-Szczepiorkowska Z, et al. Delineation variation of lymph node stations for treatment planning in lung cancer radiotherapy. Radiotherapy and Oncology. 2007;85:450–5.CrossRef
19.
go back to reference Holyoake DL, Robinson M, Grose D, McIntosh D, Sebag-Montefiore D, Radhakrishna G, et al. Conformity analysis to demonstrate reproducibility of target volumes for Margin-Intense Stereotactic Radiotherapy for borderline-resectable pancreatic cancer. Radiother Oncol. 2016;121:86–91.CrossRef Holyoake DL, Robinson M, Grose D, McIntosh D, Sebag-Montefiore D, Radhakrishna G, et al. Conformity analysis to demonstrate reproducibility of target volumes for Margin-Intense Stereotactic Radiotherapy for borderline-resectable pancreatic cancer. Radiother Oncol. 2016;121:86–91.CrossRef
20.
go back to reference Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging. 2009;28:1251–65.CrossRef Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging. 2009;28:1251–65.CrossRef
21.
go back to reference V Y, Voiculescu I. An overview of current evaluation methods used in medical image segmentation. University of Oxford; 2015. V Y, Voiculescu I. An overview of current evaluation methods used in medical image segmentation. University of Oxford; 2015.
22.
go back to reference Taha AA, Hanbury A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. 2015;37:2153–63.CrossRef Taha AA, Hanbury A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. 2015;37:2153–63.CrossRef
23.
go back to reference Delpon G, Escande A, Ruef T, Darreon J, Fontaine J, Noblet C, et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol. 2016;6:178.CrossRef Delpon G, Escande A, Ruef T, Darreon J, Fontaine J, Noblet C, et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol. 2016;6:178.CrossRef
24.
go back to reference Kim N, Chang JS, Kim YB, Kim JS. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers. Radiat Oncol. 2020;15:106.CrossRef Kim N, Chang JS, Kim YB, Kim JS. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers. Radiat Oncol. 2020;15:106.CrossRef
25.
go back to reference Feng X, Qing K, Tustison NJ, Meyer CH, Chen Q. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys. 2019;46:2169–80.CrossRef Feng X, Qing K, Tustison NJ, Meyer CH, Chen Q. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys. 2019;46:2169–80.CrossRef
26.
go back to reference Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in Auto-Segmentation. Semin Radiat Oncol. 2019;29:185–97.CrossRef Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in Auto-Segmentation. Semin Radiat Oncol. 2019;29:185–97.CrossRef
27.
go back to reference Sultana S, Robinson A, Song D, Lee J. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network. J Med Imaging (Bellingham). 2020;7. Sultana S, Robinson A, Song D, Lee J. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network. J Med Imaging (Bellingham). 2020;7.
28.
go back to reference Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126:312–7.CrossRef Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126:312–7.CrossRef
29.
go back to reference Peulen H, Belderbos J, Guckenberger M, Hope A, Grills I, van Herk M, et al. Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy. Radiother Oncol. 2015;114:361–6.CrossRef Peulen H, Belderbos J, Guckenberger M, Hope A, Grills I, van Herk M, et al. Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy. Radiother Oncol. 2015;114:361–6.CrossRef
30.
go back to reference Joskowicz L, Cohen D, Caplan N, Sosna J. Inter-observer variability of manual contour delineation of structures in CT. Eur Radiol. 2019;29:1391–9.CrossRef Joskowicz L, Cohen D, Caplan N, Sosna J. Inter-observer variability of manual contour delineation of structures in CT. Eur Radiol. 2019;29:1391–9.CrossRef
31.
go back to reference Wong J, Fong A, McVicar N, Smith S, Giambattista J, Wells D, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020;144:152–8.CrossRef Wong J, Fong A, McVicar N, Smith S, Giambattista J, Wells D, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020;144:152–8.CrossRef
32.
go back to reference Hurkmans CW, Borger JH, Pieters BR, Russell NS, Jansen EPM, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys. 2001;50:1366–72.CrossRef Hurkmans CW, Borger JH, Pieters BR, Russell NS, Jansen EPM, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys. 2001;50:1366–72.CrossRef
33.
go back to reference Anders LC, Stieler F, Siebenlist K, Schafer J, Lohr F, Wenz F. Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer. Radiother Oncol. 2012;102:68–73.CrossRef Anders LC, Stieler F, Siebenlist K, Schafer J, Lohr F, Wenz F. Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer. Radiother Oncol. 2012;102:68–73.CrossRef
34.
go back to reference Kosmin M, Ledsam J, Romera-Paredes B, Mendes R, Moinuddin S, de Souza D, et al. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother Oncol. 2019;135:130–40.CrossRef Kosmin M, Ledsam J, Romera-Paredes B, Mendes R, Moinuddin S, de Souza D, et al. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother Oncol. 2019;135:130–40.CrossRef
Metadata
Title
A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
Authors
Sebastian Marschner
Manasi Datar
Aurélie Gaasch
Zhoubing Xu
Sasa Grbic
Guillaume Chabin
Bernhard Geiger
Julian Rosenman
Stefanie Corradini
Maximilian Niyazi
Tobias Heimann
Christian Möhler
Fernando Vega
Claus Belka
Christian Thieke
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02102-6

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue