Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 2/2016

01-02-2016 | Review

Radiation-Induced Cataractogenesis: A Critical Literature Review for the Interventional Radiologist

Authors: Kevin F. Seals, Edward W. Lee, Christopher H. Cagnon, Ramsey A. Al-Hakim, Stephen T. Kee

Published in: CardioVascular and Interventional Radiology | Issue 2/2016

Login to get access

Abstract

Extensive research supports an association between radiation exposure and cataractogenesis. New data suggests that radiation-induced cataracts may form stochastically, without a threshold and at low radiation doses. We first review data linking cataractogenesis with interventional work. We then analyze the lens dose typical of various procedures, factors modulating dose, and predicted annual dosages. We conclude by critically evaluating the literature describing techniques for lens protection, finding that leaded eyeglasses may offer inadequate protection and exploring the available data on alternative strategies for cataract prevention.
Literature
1.
go back to reference Shore RE, Neriishi K, Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation doses: (not) seeing is believing. Radiat Res. 2010;174:889–94.CrossRefPubMed Shore RE, Neriishi K, Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation doses: (not) seeing is believing. Radiat Res. 2010;174:889–94.CrossRefPubMed
2.
go back to reference Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, Wicke H, Neriishi K, Blettner M. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys. 2013;52:303–19.CrossRefPubMed Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, Wicke H, Neriishi K, Blettner M. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys. 2013;52:303–19.CrossRefPubMed
3.
4.
go back to reference Ainsbury EA, Bouffler SD, Dörr W, et al. Radiation cataractogenesis: a review of recent studies. Radiat Res. 2009;172:1–9.CrossRefPubMed Ainsbury EA, Bouffler SD, Dörr W, et al. Radiation cataractogenesis: a review of recent studies. Radiat Res. 2009;172:1–9.CrossRefPubMed
5.
go back to reference Jacob S, Michael M, Brezlin A, Laurier D, Bernier M-O. Ionizing radiation as a risk factor for cataract: what about low-dose effects?. Clin Exp Ophthalmol. 2011. Jacob S, Michael M, Brezlin A, Laurier D, Bernier M-O. Ionizing radiation as a risk factor for cataract: what about low-dose effects?. Clin Exp Ophthalmol. 2011.
6.
go back to reference Nakashima E, Neriishi K, Minamoto A. A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health Phys. 2006;90:154–60.CrossRefPubMed Nakashima E, Neriishi K, Minamoto A. A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health Phys. 2006;90:154–60.CrossRefPubMed
7.
go back to reference Neriishi K, Nakashima E, Minamoto A, et al. Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res. 2007;168:404–8.CrossRefPubMed Neriishi K, Nakashima E, Minamoto A, et al. Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res. 2007;168:404–8.CrossRefPubMed
8.
go back to reference Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res. 2007;167:233–43.CrossRefPubMed Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res. 2007;167:233–43.CrossRefPubMed
9.
go back to reference Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vañó E. Clinical radiation management for fluoroscopically guided interventional procedures. Radiology. 2010;257:321–32.CrossRefPubMed Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vañó E. Clinical radiation management for fluoroscopically guided interventional procedures. Radiology. 2010;257:321–32.CrossRefPubMed
10.
11.
go back to reference Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA. 2002;99:9836–9.PubMedCentralCrossRefPubMed Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA. 2002;99:9836–9.PubMedCentralCrossRefPubMed
12.
go back to reference Vano E, Gonzalez L, Fernandez JM, Prieto C, Guibelalde E. Influence of patient thickness and operation modes on occupational and patient radiation doses in interventional cardiology. Radiat Prot Dosim. 2006;118:325–30.CrossRef Vano E, Gonzalez L, Fernandez JM, Prieto C, Guibelalde E. Influence of patient thickness and operation modes on occupational and patient radiation doses in interventional cardiology. Radiat Prot Dosim. 2006;118:325–30.CrossRef
13.
go back to reference Ainsbury EA, Bouffler S, Cocker M, et al. Public health England survey of eye lens doses in the UK medical sector. J Radiol Prot. 2014;34:15–29.CrossRefPubMed Ainsbury EA, Bouffler S, Cocker M, et al. Public health England survey of eye lens doses in the UK medical sector. J Radiol Prot. 2014;34:15–29.CrossRefPubMed
14.
go back to reference Vanhavere F, Carinou E, Domienik J, et al. Measurements of eye lens doses in interventional radiology and cardiology: final results of the ORAMED project. Radiat Meas. 2011;46:1243–7.CrossRef Vanhavere F, Carinou E, Domienik J, et al. Measurements of eye lens doses in interventional radiology and cardiology: final results of the ORAMED project. Radiat Meas. 2011;46:1243–7.CrossRef
15.
go back to reference Niklason LT, Marx MV, Chan HP. Interventional radiologists: occupational radiation doses and risks. Radiology. 1993;187:729–33.CrossRefPubMed Niklason LT, Marx MV, Chan HP. Interventional radiologists: occupational radiation doses and risks. Radiology. 1993;187:729–33.CrossRefPubMed
16.
go back to reference Jacob S, Boveda S, Bar O, et al. Interventional cardiologists and risk of radiation-induced cataract: results of a French multicenter observational study. Int J Cardiol. 2013;167:1843–7.CrossRefPubMed Jacob S, Boveda S, Bar O, et al. Interventional cardiologists and risk of radiation-induced cataract: results of a French multicenter observational study. Int J Cardiol. 2013;167:1843–7.CrossRefPubMed
17.
go back to reference Abatzoglou I, Koukourakis M, Konstantinides S. Reduction of the radiation dose received by interventional cardiologists following training in radiation protection. Radiat Prot Dosim. 2013;155:119–21.CrossRef Abatzoglou I, Koukourakis M, Konstantinides S. Reduction of the radiation dose received by interventional cardiologists following training in radiation protection. Radiat Prot Dosim. 2013;155:119–21.CrossRef
18.
go back to reference Sheyn DD, Racadio JM, Ying J, Patel MN, Johnson ND. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite. Pediatr Radiol. 2008;38:669–74.CrossRefPubMed Sheyn DD, Racadio JM, Ying J, Patel MN, Johnson ND. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite. Pediatr Radiol. 2008;38:669–74.CrossRefPubMed
19.
go back to reference Miller DL, Vañó E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. J Vasc Interv Radiol. 2010;21:607–15.CrossRefPubMed Miller DL, Vañó E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. J Vasc Interv Radiol. 2010;21:607–15.CrossRefPubMed
20.
go back to reference Stewart FA, Akleyev AV, Hauer-Jensen M, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322.CrossRefPubMed Stewart FA, Akleyev AV, Hauer-Jensen M, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322.CrossRefPubMed
21.
go back to reference Ciraj-Bjelac O, Rehani M, Minamoto A, Sim KH, Liew HB, Vano E. Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology. 2012;123:168–71.CrossRefPubMed Ciraj-Bjelac O, Rehani M, Minamoto A, Sim KH, Liew HB, Vano E. Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology. 2012;123:168–71.CrossRefPubMed
22.
go back to reference Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.CrossRefPubMed Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.CrossRefPubMed
23.
go back to reference Chodick G, Bekiroglu N, Hauptmann M, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol. 2008;168:620–31.PubMedCentralCrossRefPubMed Chodick G, Bekiroglu N, Hauptmann M, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol. 2008;168:620–31.PubMedCentralCrossRefPubMed
24.
go back to reference Hall P, Granath F, Lundell M, Olsson K, Holm LE. Lenticular opacities in individuals exposed to ionizing radiation in infancy. Radiat Res. 1999;152:190–5.CrossRefPubMed Hall P, Granath F, Lundell M, Olsson K, Holm LE. Lenticular opacities in individuals exposed to ionizing radiation in infancy. Radiat Res. 1999;152:190–5.CrossRefPubMed
25.
go back to reference Piccone J. New International Commission on Radiological Protection: recommendations on the Annual Dose Limit to the Lens of the Eye. Federal Register. 2011. Web. 2014. Piccone J. New International Commission on Radiological Protection: recommendations on the Annual Dose Limit to the Lens of the Eye. Federal Register. 2011. Web. 2014.
26.
go back to reference Shore RE. Radiation impacts on human health: certain, fuzzy, and unknown. Health Phys. 2014;106:196–205.CrossRefPubMed Shore RE. Radiation impacts on human health: certain, fuzzy, and unknown. Health Phys. 2014;106:196–205.CrossRefPubMed
27.
go back to reference Efstathopoulos EP, Pantos I, Andreou M, et al. Occupational radiation doses to the extremities and the eyes in interventional radiology and cardiology procedures. Br J Radiol. 2011;84:70–7.PubMedCentralCrossRefPubMed Efstathopoulos EP, Pantos I, Andreou M, et al. Occupational radiation doses to the extremities and the eyes in interventional radiology and cardiology procedures. Br J Radiol. 2011;84:70–7.PubMedCentralCrossRefPubMed
28.
go back to reference Vañó E, González L, Beneytez F, Moreno F. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71:728–33.CrossRefPubMed Vañó E, González L, Beneytez F, Moreno F. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71:728–33.CrossRefPubMed
29.
go back to reference Junk A, Haskal Z, Worgul B. Cataract in interventional radiology—an occupational hazard? Invest Ophthalmol Vis Sci. 2004;45:388. Junk A, Haskal Z, Worgul B. Cataract in interventional radiology—an occupational hazard? Invest Ophthalmol Vis Sci. 2004;45:388.
30.
go back to reference Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174:490–5.CrossRefPubMed Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174:490–5.CrossRefPubMed
31.
go back to reference Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Interv Radiol. 2013;24:197–204.CrossRefPubMed Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Interv Radiol. 2013;24:197–204.CrossRefPubMed
32.
go back to reference Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34.CrossRefPubMed Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34.CrossRefPubMed
33.
go back to reference Koukorava C, Carinou E, Simantirakis G, et al. Doses to operators during interventional radiology procedures: focus on eye lens and extremity dosimetry. Radiat Prot Dosim. 2011;144:482–6.CrossRef Koukorava C, Carinou E, Simantirakis G, et al. Doses to operators during interventional radiology procedures: focus on eye lens and extremity dosimetry. Radiat Prot Dosim. 2011;144:482–6.CrossRef
34.
go back to reference Lie Ø, Paulsen GU, Wøhni T. Assessment of effective dose and dose to the lens of the eye for the interventional cardiologist. Radiat Prot Dosim. 2008;132:313–8.CrossRef Lie Ø, Paulsen GU, Wøhni T. Assessment of effective dose and dose to the lens of the eye for the interventional cardiologist. Radiat Prot Dosim. 2008;132:313–8.CrossRef
35.
go back to reference Sadick V, Reed W, Collins L, Sadick N, Heard R, Robinson J. Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br J Radiol. 2010;83:379–94.PubMedCentralCrossRefPubMed Sadick V, Reed W, Collins L, Sadick N, Heard R, Robinson J. Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br J Radiol. 2010;83:379–94.PubMedCentralCrossRefPubMed
36.
go back to reference Hidajat N, Wust P, Kreuschner M, Felix R, Schröder RJ. Radiation risks for the radiologist performing transjugular intrahepatic portosystemic shunt (TIPS). Br J Radiol. 2006;79:483–6.CrossRefPubMed Hidajat N, Wust P, Kreuschner M, Felix R, Schröder RJ. Radiation risks for the radiologist performing transjugular intrahepatic portosystemic shunt (TIPS). Br J Radiol. 2006;79:483–6.CrossRefPubMed
37.
go back to reference McParland BJ. A study of patient radiation doses in interventional radiological procedures. Br J Radiol. 1998;71:175–85.CrossRefPubMed McParland BJ. A study of patient radiation doses in interventional radiological procedures. Br J Radiol. 1998;71:175–85.CrossRefPubMed
38.
go back to reference Vano E, Gonzalez L, Fernández JM, Haskal ZJ. Eye lens exposure to radiation in interventional suites: caution is warranted. Radiology. 2008;248:945–53.CrossRefPubMed Vano E, Gonzalez L, Fernández JM, Haskal ZJ. Eye lens exposure to radiation in interventional suites: caution is warranted. Radiology. 2008;248:945–53.CrossRefPubMed
39.
go back to reference Miller DL, Balter S, Cole PE, et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol. 2003;14:711–27.CrossRefPubMed Miller DL, Balter S, Cole PE, et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol. 2003;14:711–27.CrossRefPubMed
40.
go back to reference Anastasian ZH, Strozyk D, Meyers PM, Wang S, Berman MF. Radiation exposure of the anesthesiologist in the neurointerventional suite. Anesthesiology. 2011;114:512–20.CrossRefPubMed Anastasian ZH, Strozyk D, Meyers PM, Wang S, Berman MF. Radiation exposure of the anesthesiologist in the neurointerventional suite. Anesthesiology. 2011;114:512–20.CrossRefPubMed
41.
go back to reference Harstall R, Heini PF, Mini RL, Orler R. Radiation exposure to the surgeon during fluoroscopically assisted percutaneous vertebroplasty: a prospective study. Spine. 2005;30:1893–8.CrossRefPubMed Harstall R, Heini PF, Mini RL, Orler R. Radiation exposure to the surgeon during fluoroscopically assisted percutaneous vertebroplasty: a prospective study. Spine. 2005;30:1893–8.CrossRefPubMed
42.
go back to reference Heusch P, Kröpil P, Buchbender C, et al. Radiation exposure of the radiologist’s eye lens during CT-guided interventions. Acta Radiol. 2014;55:86–90.CrossRefPubMed Heusch P, Kröpil P, Buchbender C, et al. Radiation exposure of the radiologist’s eye lens during CT-guided interventions. Acta Radiol. 2014;55:86–90.CrossRefPubMed
43.
go back to reference Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB. Radiation exposure in CT-guided interventions. Eur J Radiol. 2013;82:2253–7.CrossRefPubMed Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB. Radiation exposure in CT-guided interventions. Eur J Radiol. 2013;82:2253–7.CrossRefPubMed
44.
go back to reference Buls N, Pagés J, de Mey J, Osteaux M. Evaluation of patient and staff doses during various CT fluoroscopy guided interventions. Health Phys. 2003;85:165–73.CrossRefPubMed Buls N, Pagés J, de Mey J, Osteaux M. Evaluation of patient and staff doses during various CT fluoroscopy guided interventions. Health Phys. 2003;85:165–73.CrossRefPubMed
45.
go back to reference Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy–guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220:161–7.CrossRefPubMed Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy–guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220:161–7.CrossRefPubMed
46.
go back to reference Dekker LR, van der Voort PH, Simmers TA, et al. New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: a randomized clinical trial. Heart Rhythm. 2013;10:1678–82.CrossRefPubMed Dekker LR, van der Voort PH, Simmers TA, et al. New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: a randomized clinical trial. Heart Rhythm. 2013;10:1678–82.CrossRefPubMed
47.
go back to reference Racadio J, Strauss K, Abruzzo T, et al. Significant dose reduction for pediatric digital subtraction angiography without impairing image quality: preclinical study in a piglet model. Am J Roentgenol. 2014;203:904–8.CrossRef Racadio J, Strauss K, Abruzzo T, et al. Significant dose reduction for pediatric digital subtraction angiography without impairing image quality: preclinical study in a piglet model. Am J Roentgenol. 2014;203:904–8.CrossRef
48.
go back to reference Söderman M, Holmin S, Andersson T, Palmgren C, Babic D, Hoornaert B. Image noise reduction algorithm for digital subtraction angiography: clinical results. Radiology. 2013;269:553–60.CrossRefPubMed Söderman M, Holmin S, Andersson T, Palmgren C, Babic D, Hoornaert B. Image noise reduction algorithm for digital subtraction angiography: clinical results. Radiology. 2013;269:553–60.CrossRefPubMed
49.
go back to reference Söderman M, Mauti M, Boon S, et al. Radiation dose in neuroangiography using image noise reduction technology: a population study based on 614 patients. Neuroradiology. 2013;55:1365–72.PubMedCentralCrossRefPubMed Söderman M, Mauti M, Boon S, et al. Radiation dose in neuroangiography using image noise reduction technology: a population study based on 614 patients. Neuroradiology. 2013;55:1365–72.PubMedCentralCrossRefPubMed
50.
go back to reference Kim KP, Miller DL. Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: a review. Radiat Prot Dosim. 2009;133:227–33.CrossRef Kim KP, Miller DL. Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: a review. Radiat Prot Dosim. 2009;133:227–33.CrossRef
51.
go back to reference Sturchio GM, Newcomb RD, Molella R, Varkey P, Hagen PT, Schueler BA. Protective eyewear selection for interventional fluoroscopy. Health Phys. 2013;104:S11–6.CrossRefPubMed Sturchio GM, Newcomb RD, Molella R, Varkey P, Hagen PT, Schueler BA. Protective eyewear selection for interventional fluoroscopy. Health Phys. 2013;104:S11–6.CrossRefPubMed
52.
go back to reference van Rooijen BD, de Haan MW, Das M, et al. Efficacy of radiation safety glasses in interventional radiology. Cardiovasc Intervent Radiol. 2014;37:1149–55.CrossRefPubMed van Rooijen BD, de Haan MW, Das M, et al. Efficacy of radiation safety glasses in interventional radiology. Cardiovasc Intervent Radiol. 2014;37:1149–55.CrossRefPubMed
53.
go back to reference Geber T, Gunnarrson M, Mattsson S. Eye lens dosimetry for interventional procedures e Relation between the absorbed dose to the lens and dose at measurement positions In. Radiat Meas. 2011;46:1238–51.CrossRef Geber T, Gunnarrson M, Mattsson S. Eye lens dosimetry for interventional procedures e Relation between the absorbed dose to the lens and dose at measurement positions In. Radiat Meas. 2011;46:1238–51.CrossRef
54.
go back to reference Koukorava C, Farah J, Struelens L, et al. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses. J Radiol Prot. 2014;34:509–28.CrossRefPubMed Koukorava C, Farah J, Struelens L, et al. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses. J Radiol Prot. 2014;34:509–28.CrossRefPubMed
55.
go back to reference Moore WE, Ferguson G, Rohrmann C. Physical factors determining the utility of radiation safety glasses. Med Phys. 1980;7:8–12.CrossRefPubMed Moore WE, Ferguson G, Rohrmann C. Physical factors determining the utility of radiation safety glasses. Med Phys. 1980;7:8–12.CrossRefPubMed
56.
go back to reference Challa K, Warren SG, Danak S, Bates MC. Redundant protective barriers: minimizing operator occupational risk. J Interv Cardiol. 2009;22:299–307.CrossRefPubMed Challa K, Warren SG, Danak S, Bates MC. Redundant protective barriers: minimizing operator occupational risk. J Interv Cardiol. 2009;22:299–307.CrossRefPubMed
57.
go back to reference Dash H, Leaman DM. Operator radiation exposure during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1984;4:725–8.CrossRefPubMed Dash H, Leaman DM. Operator radiation exposure during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1984;4:725–8.CrossRefPubMed
58.
go back to reference Donadille L, Carinou E, Brodecki M, et al. Staff eye lens and extremity exposure in interventional cardiology: Results of the ORAMED project. Radiat Meas. 2011;46:1203–9.CrossRef Donadille L, Carinou E, Brodecki M, et al. Staff eye lens and extremity exposure in interventional cardiology: Results of the ORAMED project. Radiat Meas. 2011;46:1203–9.CrossRef
59.
go back to reference Maeder M, Brunner-La Rocca HP, Wolber T, et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67:18–23.CrossRefPubMed Maeder M, Brunner-La Rocca HP, Wolber T, et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67:18–23.CrossRefPubMed
60.
go back to reference Fetterly KA, Magnuson DJ, Tannahill GM, Hindal MD, Mathew V. Effective use of radiation shields to minimize operator dose during invasive cardiology procedures. JACC Cardiovasc Interv. 2011;4:1133–9.CrossRefPubMed Fetterly KA, Magnuson DJ, Tannahill GM, Hindal MD, Mathew V. Effective use of radiation shields to minimize operator dose during invasive cardiology procedures. JACC Cardiovasc Interv. 2011;4:1133–9.CrossRefPubMed
61.
go back to reference Thornton RH, Dauer LT, Altamirano JP, Alvarado KJ. St Germain J, Solomon SB. Comparing strategies for operator eye protection in the interventional radiology suite. J Vasc Interv Radiol. 2010;21:1703–7.CrossRefPubMed Thornton RH, Dauer LT, Altamirano JP, Alvarado KJ. St Germain J, Solomon SB. Comparing strategies for operator eye protection in the interventional radiology suite. J Vasc Interv Radiol. 2010;21:1703–7.CrossRefPubMed
62.
go back to reference Marichal DA, Anwar T, Kirsch D, et al. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol. 2011;22:437–42.CrossRefPubMed Marichal DA, Anwar T, Kirsch D, et al. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol. 2011;22:437–42.CrossRefPubMed
63.
go back to reference Fattal P, Goldstein JA. A novel complete radiation protection system eliminates physician radiation exposure and leaded aprons. Catheter Cardiovasc Interv. 2013;82:11–6.CrossRefPubMed Fattal P, Goldstein JA. A novel complete radiation protection system eliminates physician radiation exposure and leaded aprons. Catheter Cardiovasc Interv. 2013;82:11–6.CrossRefPubMed
64.
go back to reference Kloeze C, Klompenhouwer EG, Brands PJ, van Sambeek MR, Cuypers PW, Teijink JA. Editor’s choice–Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures. Eur J Vasc Endovasc Surg. 2014;47:268–72.CrossRefPubMed Kloeze C, Klompenhouwer EG, Brands PJ, van Sambeek MR, Cuypers PW, Teijink JA. Editor’s choice–Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures. Eur J Vasc Endovasc Surg. 2014;47:268–72.CrossRefPubMed
65.
go back to reference King JN, Champlin AM, Kelsey CA, Tripp DA. Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. Am J Roentgenol. 2002;178:153–7.CrossRef King JN, Champlin AM, Kelsey CA, Tripp DA. Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. Am J Roentgenol. 2002;178:153–7.CrossRef
66.
go back to reference Simons GR, Orrison WW. Use of a sterile, disposable, radiation-absorbing shield reduces occupational exposure to scatter radiation during pectoral device implantation. Pacing Clin Electrophysiol. 2004;27:726–9.CrossRefPubMed Simons GR, Orrison WW. Use of a sterile, disposable, radiation-absorbing shield reduces occupational exposure to scatter radiation during pectoral device implantation. Pacing Clin Electrophysiol. 2004;27:726–9.CrossRefPubMed
67.
go back to reference Politi L, Biondi-Zoccai G, Nocetti L, et al. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield. Catheter Cardiovasc Interv. 2012;79:97–102.CrossRefPubMed Politi L, Biondi-Zoccai G, Nocetti L, et al. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield. Catheter Cardiovasc Interv. 2012;79:97–102.CrossRefPubMed
68.
go back to reference Sawdy JM, Gocha MD, Olshove V, et al. Radiation protection during hybrid procedures: innovation creates new challenges. J Invasive Cardiol. 2009;21:437–40.PubMed Sawdy JM, Gocha MD, Olshove V, et al. Radiation protection during hybrid procedures: innovation creates new challenges. J Invasive Cardiol. 2009;21:437–40.PubMed
70.
go back to reference Germano JJ, Day G, Gregorious D, Natarajan V, Cohen T. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures. J Invasive Cardiol. 2005;17:469–72.PubMed Germano JJ, Day G, Gregorious D, Natarajan V, Cohen T. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures. J Invasive Cardiol. 2005;17:469–72.PubMed
71.
go back to reference Murphy JC, Darragh K, Walsh SJ, Hanratty CG. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures. Am J Cardiol. 2011;108:1408–10.CrossRefPubMed Murphy JC, Darragh K, Walsh SJ, Hanratty CG. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures. Am J Cardiol. 2011;108:1408–10.CrossRefPubMed
72.
go back to reference Brambilla M, Occhetta E, Ronconi M, Plebani L, Carriero A, Marino P. Reducing operator radiation exposure during cardiac resynchronization therapy. Europace. 2010;12:1769–73.CrossRefPubMed Brambilla M, Occhetta E, Ronconi M, Plebani L, Carriero A, Marino P. Reducing operator radiation exposure during cardiac resynchronization therapy. Europace. 2010;12:1769–73.CrossRefPubMed
Metadata
Title
Radiation-Induced Cataractogenesis: A Critical Literature Review for the Interventional Radiologist
Authors
Kevin F. Seals
Edward W. Lee
Christopher H. Cagnon
Ramsey A. Al-Hakim
Stephen T. Kee
Publication date
01-02-2016
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 2/2016
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-015-1207-z

Other articles of this Issue 2/2016

CardioVascular and Interventional Radiology 2/2016 Go to the issue