Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2018

01-04-2018 | Research Article

Radial MRI with variable echo times: reducing the orientation dependency of susceptibility artifacts of an MR-safe guidewire

Authors: Katharina E. Schleicher, Michael Bock, Klaus Düring, Stefan Kroboth, Axel J. Krafft

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2018

Login to get access

Abstract

Objectives

Guidewires are indispensable tools for intravascular MR-guided interventions. Recently, an MR-safe guidewire made from a glass-fiber/epoxy compound material with embedded iron particles was developed. The size of the induced susceptibility artifact, and thus the guidewire’s visibility, depends on its orientation against B 0. We present a radial acquisition scheme with variable echo times that aims to reduce the artifact’s orientation dependency.

Materials and methods

The radial acquisition scheme uses sine-squared modulated echo times depending on the physical direction of the spoke to balance the susceptibility artifact of the guidewire. The acquisition scheme was studied in simulations based on dipole fields and in phantom experiments for different orientations of the guidewire against B 0. The simulated and measured artifact widths were quantitatively compared.

Results

Compared to acquisitions with non-variable echo times, the proposed acquisition scheme shows a reduced angular variability. For the two main orientations (i.e., parallel and perpendicular to B 0), the ratio of the artifact widths was reduced from about 2.2 (perpendicular vs. parallel) to about 1.2 with the variable echo time approach.

Conclusion

The reduction of the orientation dependency of the guidewire’s artifact via sine-squared varying echo times could be verified in simulations and measurements. The more balanced artifact allows for a better overall visibility of the guidewire.
Literature
1.
go back to reference Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338CrossRefPubMed Bock M, Wacker FK (2008) MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 27:326–338CrossRefPubMed
2.
go back to reference Konings MK, Bartels LW, Smits HFM, Bakker CJG (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12:79–85CrossRefPubMed Konings MK, Bartels LW, Smits HFM, Bakker CJG (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12:79–85CrossRefPubMed
3.
go back to reference Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13:105–114CrossRefPubMed Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13:105–114CrossRefPubMed
4.
go back to reference Wolska-Krawczyk M, Rube MA, Immel E, Melzer A, Buecker A (2013) Heating and safety of a new MR-compatible guidewire prototype versus a standard nitinol guidewire. Radiol Phys Technol 7:95–101CrossRefPubMed Wolska-Krawczyk M, Rube MA, Immel E, Melzer A, Buecker A (2013) Heating and safety of a new MR-compatible guidewire prototype versus a standard nitinol guidewire. Radiol Phys Technol 7:95–101CrossRefPubMed
5.
go back to reference Ladd ME, Quick HH (2000) Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 43:615–619CrossRefPubMed Ladd ME, Quick HH (2000) Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 43:615–619CrossRefPubMed
6.
go back to reference Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B (2005) Transmission line for improved RF safety of interventional devices. Magn Reson Med 54:182–189CrossRefPubMed Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B (2005) Transmission line for improved RF safety of interventional devices. Magn Reson Med 54:182–189CrossRefPubMed
7.
go back to reference Vernickel P, Schulz V, Weiss S, Gleich B (2005) A safe transmission line for MRI. IEEE Trans Biomed Eng 52:1094–1102CrossRefPubMed Vernickel P, Schulz V, Weiss S, Gleich B (2005) A safe transmission line for MRI. IEEE Trans Biomed Eng 52:1094–1102CrossRefPubMed
8.
go back to reference Krafft A, Müller S, Umathum R, Semmler W, Bock M (2006) B1 field-insensitive transformers for RF-safe transmission lines. Magn Reson Mater Phy 19:257–266CrossRef Krafft A, Müller S, Umathum R, Semmler W, Bock M (2006) B1 field-insensitive transformers for RF-safe transmission lines. Magn Reson Mater Phy 19:257–266CrossRef
9.
go back to reference Mekle R, Hofmann E, Scheffler K, Bilecen D (2006) A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J Magn Reson Imaging 23:145–155CrossRefPubMed Mekle R, Hofmann E, Scheffler K, Bilecen D (2006) A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA). J Magn Reson Imaging 23:145–155CrossRefPubMed
10.
go back to reference Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, Kraemer N, Spuentrup E, Krombach G, Buecker A (2008) An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med 60:1190–1196CrossRefPubMed Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, Kraemer N, Spuentrup E, Krombach G, Buecker A (2008) An MR guidewire based on micropultruded fiber-reinforced material. Magn Reson Med 60:1190–1196CrossRefPubMed
11.
go back to reference Krämer NA, Krüger S, Schmitz S, Linssen M, Schade H, Weiss S, Spüntrup E, Günther RW, Bücker A, Krombach GA (2009) Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Invest Radiol 44:390–397CrossRefPubMed Krämer NA, Krüger S, Schmitz S, Linssen M, Schade H, Weiss S, Spüntrup E, Günther RW, Bücker A, Krombach GA (2009) Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Invest Radiol 44:390–397CrossRefPubMed
12.
go back to reference Massmann A, Buecker A, Schneider GK (2017) Glass-fiber—based MR-safe guidewire for MR imaging—guided endovascular interventions: in vitro and preclinical in vivo feasibility study. Radiology. doi:10.1148/radiol.2017152742 PubMed Massmann A, Buecker A, Schneider GK (2017) Glass-fiber—based MR-safe guidewire for MR imaging—guided endovascular interventions: in vitro and preclinical in vivo feasibility study. Radiology. doi:10.​1148/​radiol.​2017152742 PubMed
13.
14.
go back to reference Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850CrossRefPubMed Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850CrossRefPubMed
15.
go back to reference Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343CrossRefPubMed Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343CrossRefPubMed
16.
go back to reference Müller-Bierl B, Graf H, Lauer U, Steidle G, Schick F (2004) Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 31:579–587CrossRefPubMed Müller-Bierl B, Graf H, Lauer U, Steidle G, Schick F (2004) Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 31:579–587CrossRefPubMed
17.
go back to reference Müller-Bierl BM, Graf H, Pereira PL, Schick F (2006) Numerical simulations of intra-voxel dephasing effects and signal voids in gradient echo MR imaging using different sub-grid sizes. Magn Reson Mater Phy 19:88–95CrossRef Müller-Bierl BM, Graf H, Pereira PL, Schick F (2006) Numerical simulations of intra-voxel dephasing effects and signal voids in gradient echo MR imaging using different sub-grid sizes. Magn Reson Mater Phy 19:88–95CrossRef
18.
go back to reference Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651CrossRefPubMed Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651CrossRefPubMed
19.
go back to reference de Leeuw H, Seevinck PR, Bakker CJ (2013) Center-out radial sampling with off-resonant reconstruction for efficient and accurate localization of punctate and elongated paramagnetic structures. Magn Reson Med 69:1611–1622CrossRefPubMed de Leeuw H, Seevinck PR, Bakker CJ (2013) Center-out radial sampling with off-resonant reconstruction for efficient and accurate localization of punctate and elongated paramagnetic structures. Magn Reson Med 69:1611–1622CrossRefPubMed
21.
go back to reference Krafft AJ, Reiß S, Düring K, Bock M (2015) Variable echotimes in radial acquisitions to achieve a uniform artifact for passive MR guidewires. Proceedings of the ISMRM 23rd scientific meeting and exhibition, Toronto, Canada, abstract: 1662 Krafft AJ, Reiß S, Düring K, Bock M (2015) Variable echotimes in radial acquisitions to achieve a uniform artifact for passive MR guidewires. Proceedings of the ISMRM 23rd scientific meeting and exhibition, Toronto, Canada, abstract: 1662
22.
go back to reference Fessler JA, Sutton BP (2003) Nonuniform fast fourier transforms using min-max interpolation. IEEE Trans Signal Process 51:560–574CrossRef Fessler JA, Sutton BP (2003) Nonuniform fast fourier transforms using min-max interpolation. IEEE Trans Signal Process 51:560–574CrossRef
23.
go back to reference Kroboth S (2012) Fast Regularized Reconstruction for PatLoc MR Imaging using Total Generalized Variation and Graphics Cards [Master’s Thesis]. Graz University of Technology, Graz Kroboth S (2012) Fast Regularized Reconstruction for PatLoc MR Imaging using Total Generalized Variation and Graphics Cards [Master’s Thesis]. Graz University of Technology, Graz
Metadata
Title
Radial MRI with variable echo times: reducing the orientation dependency of susceptibility artifacts of an MR-safe guidewire
Authors
Katharina E. Schleicher
Michael Bock
Klaus Düring
Stefan Kroboth
Axel J. Krafft
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0645-9

Other articles of this Issue 2/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2018 Go to the issue