Skip to main content
Top
Published in: Breast Cancer Research 2/2012

Open Access 01-04-2012 | Research article

RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation

Authors: Ying Yan, Patrick M Greer, Phu T Cao, Ryan H Kolb, Kenneth H Cowan

Published in: Breast Cancer Research | Issue 2/2012

Login to get access

Abstract

Introduction

In response to gamma-irradiation (IR)-induced double-strand DNA breaks, cells undergo cell-cycle arrest, allowing time for DNA repair before reentering the cell cycle. G2/M checkpoint activation involves activation of ataxia telangiectasia mutated (ATM)/ATM- and rad3-related (ATR) kinases and inhibition of Cdc25 phosphatases, resulting in inhibition of Cdc2 kinase and subsequent G2/M cell-cycle arrest. Previous studies from our laboratory showed that the G2/M checkpoint activation after IR exposure of MCF-7 breast cancer cells is dependent on the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signaling. In the present studies, we investigated the role of Ras-related C3 botulinum toxin substrate 1 (Rac1) guanosine triphosphatase (GTPase) in IR-induced G2/M checkpoint response and ERK1/2 activation, as well as in cell survival after IR.

Methods

With Rac1-specific inhibitor, dominant negative mutant Rac1 (N17Rac1) and specific small interfering RNA, the effect of Rac1 on IR-induced G2/M checkpoint response and ERK1/2 activation was examined in human breast cancer cells. In addition, the effect of Rac1 on cell survival after irradiation was assessed by using Rac1-specific inhibitor.

Results

IR exposure of MCF-7 breast cancer cells was associated with a marked activation of Rac1 GTPase. Furthermore, inhibition of Rac1 by using specific inhibitor, dominant-negative Rac1 mutant, or specific siRNA resulted in attenuation of IR-induced G2/M arrest and concomitant diminution of IR-induced activation of ATM, ATR, Chk1, and Chk2 kinases, as well as phosphorylation of Cdc2-Tyr15. Moreover, Rac1 inhibition or decreased Rac1 expression also abrogated IR-induced phosphorylation of mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) and ERK1/2. Ultimately, inhibition of Rac1 markedly increased cellular sensitivity to IR exposure, which involves induction of apoptosis.

Conclusion

Studies in this report suggest that Rac1 GTPase plays an essential role in the activation of IR-induced ERK1/2 signaling and subsequent G2/M checkpoint response. Furthermore, results also support a role for Rac1 in promoting cell survival after irradiation treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Motoyama N, Naka K: DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev. 2004, 14: 11-10.1016/j.gde.2003.12.003.CrossRefPubMed Motoyama N, Naka K: DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev. 2004, 14: 11-10.1016/j.gde.2003.12.003.CrossRefPubMed
2.
go back to reference Iliakis G, Wang Y, Guan J, Wang H: DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003, 22: 5834-5847. 10.1038/sj.onc.1206682.CrossRefPubMed Iliakis G, Wang Y, Guan J, Wang H: DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003, 22: 5834-5847. 10.1038/sj.onc.1206682.CrossRefPubMed
3.
4.
go back to reference Rhind N, Furnari B, Russell P: Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 1997, 11: 504-511. 10.1101/gad.11.4.504.CrossRefPubMed Rhind N, Furnari B, Russell P: Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 1997, 11: 504-511. 10.1101/gad.11.4.504.CrossRefPubMed
5.
go back to reference Kharbanda S, Saleem A, Datta R, Yuan ZM, Weichselbaum R, Kufe D: Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer Res. 1994, 54: 1412-1414.PubMed Kharbanda S, Saleem A, Datta R, Yuan ZM, Weichselbaum R, Kufe D: Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer Res. 1994, 54: 1412-1414.PubMed
6.
go back to reference O'Connell MJ, Raleigh JM, Verkade HM, Nurse P: Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 1997, 16: 545-554. 10.1093/emboj/16.3.545.CrossRefPubMedPubMedCentral O'Connell MJ, Raleigh JM, Verkade HM, Nurse P: Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 1997, 16: 545-554. 10.1093/emboj/16.3.545.CrossRefPubMedPubMedCentral
7.
go back to reference Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D: mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell. 1991, 64: 1111-1122. 10.1016/0092-8674(91)90266-2.CrossRefPubMed Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D: mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell. 1991, 64: 1111-1122. 10.1016/0092-8674(91)90266-2.CrossRefPubMed
8.
go back to reference Parker LL, Atherton-Fessler S, Piwnica-Worms H: p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA. 1992, 89: 2917-2921. 10.1073/pnas.89.7.2917.CrossRefPubMedPubMedCentral Parker LL, Atherton-Fessler S, Piwnica-Worms H: p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA. 1992, 89: 2917-2921. 10.1073/pnas.89.7.2917.CrossRefPubMedPubMedCentral
9.
go back to reference Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, Zhao H, Moody SA, Appella E, Piwnica-Worms H, Fornace AJ: Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol. 2003, 5: 545-551. 10.1038/ncb994.CrossRefPubMed Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, Zhao H, Moody SA, Appella E, Piwnica-Worms H, Fornace AJ: Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol. 2003, 5: 545-551. 10.1038/ncb994.CrossRefPubMed
10.
go back to reference Kastan MB, Bartek J: Cell-cycle checkpoints and cancer. Nature. 2004, 432: 316-323. 10.1038/nature03097.CrossRefPubMed Kastan MB, Bartek J: Cell-cycle checkpoints and cancer. Nature. 2004, 432: 316-323. 10.1038/nature03097.CrossRefPubMed
11.
go back to reference Prigent C, Dimitrov S: Phosphorylation of serine 10 in histone H3, what for?. J Cell Sci. 2003, 116: 3677-3685. 10.1242/jcs.00735.CrossRefPubMed Prigent C, Dimitrov S: Phosphorylation of serine 10 in histone H3, what for?. J Cell Sci. 2003, 116: 3677-3685. 10.1242/jcs.00735.CrossRefPubMed
12.
go back to reference Xu B, Kastan MB: Analyzing cell cycle checkpoints after ionizing radiation. Methods Mol Biol. 2004, 281: 283-292.PubMed Xu B, Kastan MB: Analyzing cell cycle checkpoints after ionizing radiation. Methods Mol Biol. 2004, 281: 283-292.PubMed
13.
go back to reference Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997, 106: 348-360. 10.1007/s004120050256.CrossRefPubMed Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997, 106: 348-360. 10.1007/s004120050256.CrossRefPubMed
14.
go back to reference Sauve DM, Anderson HJ, Ray JM, James WM, Roberge M: Phosphorylation-induced rearrangement of the histone H3 NH2-terminal domain during mitotic chromosome condensation. J Cell Biol. 1999, 145: 225-235. 10.1083/jcb.145.2.225.CrossRefPubMedPubMedCentral Sauve DM, Anderson HJ, Ray JM, James WM, Roberge M: Phosphorylation-induced rearrangement of the histone H3 NH2-terminal domain during mitotic chromosome condensation. J Cell Biol. 1999, 145: 225-235. 10.1083/jcb.145.2.225.CrossRefPubMedPubMedCentral
15.
go back to reference Xu B, Kim ST, Lim DS, Kastan MB: Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol. 2002, 22: 1049-1059. 10.1128/MCB.22.4.1049-1059.2002.CrossRefPubMedPubMedCentral Xu B, Kim ST, Lim DS, Kastan MB: Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol. 2002, 22: 1049-1059. 10.1128/MCB.22.4.1049-1059.2002.CrossRefPubMedPubMedCentral
16.
go back to reference Yan Y, Black CP, Cowan KH: Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene. 2007, 26: 4689-4698. 10.1038/sj.onc.1210268.CrossRefPubMed Yan Y, Black CP, Cowan KH: Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene. 2007, 26: 4689-4698. 10.1038/sj.onc.1210268.CrossRefPubMed
17.
go back to reference Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S: MAPK pathways in radiation responses. Oncogene. 2003, 22: 5885-5896. 10.1038/sj.onc.1206701.CrossRefPubMed Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S: MAPK pathways in radiation responses. Oncogene. 2003, 22: 5885-5896. 10.1038/sj.onc.1206701.CrossRefPubMed
18.
go back to reference Cui W, Yazlovitskaya EM, Mayo MS, Pelling JC, Persons DL: Cisplatin-induced response of c-jun N-terminal kinase 1 and extracellular signal-regulated protein kinases 1 and 2 in a series of cisplatin-resistant ovarian carcinoma cell lines. Mol Carcinog. 2000, 29: 219-228. 10.1002/1098-2744(200012)29:4<219::AID-MC1004>3.0.CO;2-D.CrossRefPubMed Cui W, Yazlovitskaya EM, Mayo MS, Pelling JC, Persons DL: Cisplatin-induced response of c-jun N-terminal kinase 1 and extracellular signal-regulated protein kinases 1 and 2 in a series of cisplatin-resistant ovarian carcinoma cell lines. Mol Carcinog. 2000, 29: 219-228. 10.1002/1098-2744(200012)29:4<219::AID-MC1004>3.0.CO;2-D.CrossRefPubMed
19.
go back to reference Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, Wang Y, Huang S, Han J: Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol. 2000, 20: 4543-4552. 10.1128/MCB.20.13.4543-4552.2000.CrossRefPubMedPubMedCentral Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, Wang Y, Huang S, Han J: Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol. 2000, 20: 4543-4552. 10.1128/MCB.20.13.4543-4552.2000.CrossRefPubMedPubMedCentral
20.
go back to reference Abbott DW, Holt JT: Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem. 1999, 274: 2732-2742. 10.1074/jbc.274.5.2732.CrossRefPubMed Abbott DW, Holt JT: Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem. 1999, 274: 2732-2742. 10.1074/jbc.274.5.2732.CrossRefPubMed
21.
go back to reference Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002, 277: 12710-12717. 10.1074/jbc.M111598200.CrossRefPubMed Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 2002, 277: 12710-12717. 10.1074/jbc.M111598200.CrossRefPubMed
22.
go back to reference Bosco EE, Mulloy JC, Zheng Y: Rac1 GTPase: a "Rac" of all trades. Cell Mol Life Sci. 2009, 66: 370-374. 10.1007/s00018-008-8552-x.CrossRefPubMed Bosco EE, Mulloy JC, Zheng Y: Rac1 GTPase: a "Rac" of all trades. Cell Mol Life Sci. 2009, 66: 370-374. 10.1007/s00018-008-8552-x.CrossRefPubMed
23.
go back to reference Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E: Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000, 19: 3013-3020. 10.1038/sj.onc.1203621.CrossRefPubMed Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E: Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000, 19: 3013-3020. 10.1038/sj.onc.1203621.CrossRefPubMed
24.
go back to reference Fritz G, Just I, Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999, 81: 682-687. 10.1002/(SICI)1097-0215(19990531)81:5<682::AID-IJC2>3.0.CO;2-B.CrossRefPubMed Fritz G, Just I, Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999, 81: 682-687. 10.1002/(SICI)1097-0215(19990531)81:5<682::AID-IJC2>3.0.CO;2-B.CrossRefPubMed
25.
go back to reference Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E: Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene. 1999, 18: 6835-6839. 10.1038/sj.onc.1203233.CrossRefPubMed Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E: Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene. 1999, 18: 6835-6839. 10.1038/sj.onc.1203233.CrossRefPubMed
26.
go back to reference Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ: Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 2004, 23: 9369-9380. 10.1038/sj.onc.1208182.CrossRefPubMed Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ: Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 2004, 23: 9369-9380. 10.1038/sj.onc.1208182.CrossRefPubMed
27.
go back to reference Brown JH, Del Re DP, Sussman MA: The Rac and Rho Hall of Fame: a decade of hypertrophic signaling hits. Circ Res. 2006, 98: 730-742. 10.1161/01.RES.0000216039.75913.9e.CrossRefPubMed Brown JH, Del Re DP, Sussman MA: The Rac and Rho Hall of Fame: a decade of hypertrophic signaling hits. Circ Res. 2006, 98: 730-742. 10.1161/01.RES.0000216039.75913.9e.CrossRefPubMed
28.
go back to reference Eblen ST, Slack JK, Weber MJ, Catling AD: Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol. 2002, 22: 6023-6033. 10.1128/MCB.22.17.6023-6033.2002.CrossRefPubMedPubMedCentral Eblen ST, Slack JK, Weber MJ, Catling AD: Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol. 2002, 22: 6023-6033. 10.1128/MCB.22.17.6023-6033.2002.CrossRefPubMedPubMedCentral
29.
go back to reference King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, Marshall MS: The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998, 396: 180-183. 10.1038/24184.CrossRefPubMed King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, Marshall MS: The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998, 396: 180-183. 10.1038/24184.CrossRefPubMed
30.
go back to reference Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, Marshall MS, Weber MJ, Parsons JT, Catling AD: PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol. 2003, 162: 281-291. 10.1083/jcb.200212141.CrossRefPubMedPubMedCentral Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, Marshall MS, Weber MJ, Parsons JT, Catling AD: PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol. 2003, 162: 281-291. 10.1083/jcb.200212141.CrossRefPubMedPubMedCentral
31.
go back to reference Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Takagahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H: G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem. 2005, 280: 18434-18441.CrossRefPubMed Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Takagahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H: G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem. 2005, 280: 18434-18441.CrossRefPubMed
32.
go back to reference Moore KA, Sethi R, Doanes AM, Johnson TM, Pracyk JB, Kirby M, Irani K, Goldschmidt-Clermont PJ, Finkel T: Rac1 is required for cell proliferation and G2/M progression. Biochem J. 1997, 326: 17-20.CrossRefPubMedPubMedCentral Moore KA, Sethi R, Doanes AM, Johnson TM, Pracyk JB, Kirby M, Irani K, Goldschmidt-Clermont PJ, Finkel T: Rac1 is required for cell proliferation and G2/M progression. Biochem J. 1997, 326: 17-20.CrossRefPubMedPubMedCentral
33.
go back to reference Michaelson D, Abidi W, Guardavaccaro D, Zhou M, Ahearn I, Pagano M, Philips MR: Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J Cell Biol. 2008, 181: 485-496. 10.1083/jcb.200801047.CrossRefPubMedPubMedCentral Michaelson D, Abidi W, Guardavaccaro D, Zhou M, Ahearn I, Pagano M, Philips MR: Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J Cell Biol. 2008, 181: 485-496. 10.1083/jcb.200801047.CrossRefPubMedPubMedCentral
34.
go back to reference Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50: 6075-6086.PubMed Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50: 6075-6086.PubMed
35.
go back to reference Zhao X, Malhotra GK, Lele SM, Lele MS, West WW, Eudy JD, Band H, Band V: Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate. Proc Natl Acad Sci USA. 2010, 107: 14146-14151. 10.1073/pnas.1009030107.CrossRefPubMedPubMedCentral Zhao X, Malhotra GK, Lele SM, Lele MS, West WW, Eudy JD, Band H, Band V: Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate. Proc Natl Acad Sci USA. 2010, 107: 14146-14151. 10.1073/pnas.1009030107.CrossRefPubMedPubMedCentral
36.
go back to reference Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA. 2004, 101: 7618-7623. 10.1073/pnas.0307512101.CrossRefPubMedPubMedCentral Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA. 2004, 101: 7618-7623. 10.1073/pnas.0307512101.CrossRefPubMedPubMedCentral
37.
go back to reference Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT: Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999, 59: 4375-4382.PubMed Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT: Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999, 59: 4375-4382.PubMed
38.
go back to reference Hall-Jackson CA, Cross DA, Morrice N, Smythe C: ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene. 1999, 18: 6707-6713. 10.1038/sj.onc.1203077.CrossRefPubMed Hall-Jackson CA, Cross DA, Morrice N, Smythe C: ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene. 1999, 18: 6707-6713. 10.1038/sj.onc.1203077.CrossRefPubMed
39.
go back to reference Wei Q, Adelstein RS: Pitx2a expression alters actin-myosin cytoskeleton and migration of HeLa cells through Rho GTPase signaling. Mol Biol Cell. 2002, 13: 683-697. 10.1091/mbc.01-07-0358.CrossRefPubMedPubMedCentral Wei Q, Adelstein RS: Pitx2a expression alters actin-myosin cytoskeleton and migration of HeLa cells through Rho GTPase signaling. Mol Biol Cell. 2002, 13: 683-697. 10.1091/mbc.01-07-0358.CrossRefPubMedPubMedCentral
40.
go back to reference Cook JA, Albacker L, August A, Henderson AJ: CD28-dependent HIV-1 transcription is associated with Vav, Rac, and NF-kappa B activation. J Biol Chem. 2003, 278: 35812-35818. 10.1074/jbc.M302878200.CrossRefPubMed Cook JA, Albacker L, August A, Henderson AJ: CD28-dependent HIV-1 transcription is associated with Vav, Rac, and NF-kappa B activation. J Biol Chem. 2003, 278: 35812-35818. 10.1074/jbc.M302878200.CrossRefPubMed
41.
go back to reference Deng K, Gao Y, Cao Z, Graziani EI, Wood A, Doherty P, Walsh FS: Overcoming amino-nogo-induced inhibition of cell spreading and neurite outgrowth by 12-O-tetradecanoylphorbol-13-acetate-type tumor promoters. J Biol Chem. 2010, 285: 6425-6433. 10.1074/jbc.M109.071548.CrossRefPubMed Deng K, Gao Y, Cao Z, Graziani EI, Wood A, Doherty P, Walsh FS: Overcoming amino-nogo-induced inhibition of cell spreading and neurite outgrowth by 12-O-tetradecanoylphorbol-13-acetate-type tumor promoters. J Biol Chem. 2010, 285: 6425-6433. 10.1074/jbc.M109.071548.CrossRefPubMed
42.
go back to reference Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992, 70: 401-410. 10.1016/0092-8674(92)90164-8.CrossRefPubMed Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992, 70: 401-410. 10.1016/0092-8674(92)90164-8.CrossRefPubMed
43.
go back to reference Yan Y, Haas JP, Kim M, Sgagias MK, Cowan KH: BRCA1-induced apoptosis involves inactivation of ERK1/2 activities. J Biol Chem. 2002, 277: 33422-33430. 10.1074/jbc.M201147200.CrossRefPubMed Yan Y, Haas JP, Kim M, Sgagias MK, Cowan KH: BRCA1-induced apoptosis involves inactivation of ERK1/2 activities. J Biol Chem. 2002, 277: 33422-33430. 10.1074/jbc.M201147200.CrossRefPubMed
44.
go back to reference Wang X, Gorospe M, Huang Y, Holbrook NJ: p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene. 1997, 15: 2991-2997. 10.1038/sj.onc.1201450.CrossRefPubMed Wang X, Gorospe M, Huang Y, Holbrook NJ: p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene. 1997, 15: 2991-2997. 10.1038/sj.onc.1201450.CrossRefPubMed
45.
go back to reference Twigger K, Vidal L, White CL, De Bono JS, Bhide S, Coffey M, Thompson B, Vile RG, Heinemann L, Pandha HS, Errington F, Melcher AA, Harrington KJ: Enhanced in vitro and in vivo cytotoxicity of combined reovirus and radiotherapy. Clin Cancer Res. 2008, 14: 912-923. 10.1158/1078-0432.CCR-07-1400.CrossRefPubMed Twigger K, Vidal L, White CL, De Bono JS, Bhide S, Coffey M, Thompson B, Vile RG, Heinemann L, Pandha HS, Errington F, Melcher AA, Harrington KJ: Enhanced in vitro and in vivo cytotoxicity of combined reovirus and radiotherapy. Clin Cancer Res. 2008, 14: 912-923. 10.1158/1078-0432.CCR-07-1400.CrossRefPubMed
46.
go back to reference Kuo P-L, Hsu Y-L, Cho C-Y: Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther. 2006, 5: 3209-3221. 10.1158/1535-7163.MCT-06-0478.CrossRefPubMed Kuo P-L, Hsu Y-L, Cho C-Y: Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther. 2006, 5: 3209-3221. 10.1158/1535-7163.MCT-06-0478.CrossRefPubMed
47.
go back to reference Cai Z, Chattopadhyay N, Liu WJ, Chan C, Pignol J-P, Reilly RM: Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: comparison with manual counting. Int J Radiat Biol. 2011, 87: 1135-1146. 10.3109/09553002.2011.622033.CrossRefPubMed Cai Z, Chattopadhyay N, Liu WJ, Chan C, Pignol J-P, Reilly RM: Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: comparison with manual counting. Int J Radiat Biol. 2011, 87: 1135-1146. 10.3109/09553002.2011.622033.CrossRefPubMed
48.
go back to reference Xu B, Kim S, Kastan MB: Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol. 2001, 21: 3445-3450. 10.1128/MCB.21.10.3445-3450.2001.CrossRefPubMedPubMedCentral Xu B, Kim S, Kastan MB: Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol. 2001, 21: 3445-3450. 10.1128/MCB.21.10.3445-3450.2001.CrossRefPubMedPubMedCentral
49.
go back to reference Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994, 371: 346-347. 10.1038/371346a0.CrossRefPubMed Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994, 371: 346-347. 10.1038/371346a0.CrossRefPubMed
50.
go back to reference Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W: Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer. 2009, 8: 8-10.1186/1476-4598-8-8.CrossRefPubMedPubMedCentral Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W: Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer. 2009, 8: 8-10.1186/1476-4598-8-8.CrossRefPubMedPubMedCentral
51.
go back to reference Kuntz K, O'Connell MJ: The G(2) DNA damage checkpoint: could this ancient regulator be the Achilles heel of cancer?. Cancer Biol Ther. 2009, 8: 1433-1439.CrossRefPubMed Kuntz K, O'Connell MJ: The G(2) DNA damage checkpoint: could this ancient regulator be the Achilles heel of cancer?. Cancer Biol Ther. 2009, 8: 1433-1439.CrossRefPubMed
52.
go back to reference Wang WH, Hullinger RL, Andrisani OM: Hepatitis B virus X protein via the p38MAPK pathway induces E2F1 release and ATR kinase activation mediating p53 apoptosis. J Biol Chem. 2008, 283: 25455-25467. 10.1074/jbc.M801934200.CrossRefPubMedPubMedCentral Wang WH, Hullinger RL, Andrisani OM: Hepatitis B virus X protein via the p38MAPK pathway induces E2F1 release and ATR kinase activation mediating p53 apoptosis. J Biol Chem. 2008, 283: 25455-25467. 10.1074/jbc.M801934200.CrossRefPubMedPubMedCentral
53.
go back to reference Zhou J, Lim CU, Li JJ, Cai L, Zhang Y: The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage. Cancer Lett. 2006, 243: 9-15. 10.1016/j.canlet.2006.01.026.CrossRefPubMedPubMedCentral Zhou J, Lim CU, Li JJ, Cai L, Zhang Y: The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage. Cancer Lett. 2006, 243: 9-15. 10.1016/j.canlet.2006.01.026.CrossRefPubMedPubMedCentral
54.
go back to reference Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY, Zhang B: Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther. 2010, 9: 1657-1668. 10.1158/1535-7163.MCT-09-0906.CrossRefPubMed Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY, Zhang B: Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther. 2010, 9: 1657-1668. 10.1158/1535-7163.MCT-09-0906.CrossRefPubMed
55.
go back to reference Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene. 2001, 20: 1803-1815. 10.1038/sj.onc.1204252.CrossRefPubMed Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene. 2001, 20: 1803-1815. 10.1038/sj.onc.1204252.CrossRefPubMed
56.
go back to reference Lacroix M, Toillon R-A, Leclercq G: p53 and breast cancer, an update. Endocr Relat Cancer. 2006, 13: 293-325. 10.1677/erc.1.01172.CrossRefPubMed Lacroix M, Toillon R-A, Leclercq G: p53 and breast cancer, an update. Endocr Relat Cancer. 2006, 13: 293-325. 10.1677/erc.1.01172.CrossRefPubMed
57.
go back to reference Watson NC, Di YM, Orr MS, Fornari FA, Randolph JK, Magnet KJ, Jain PT, Gewirtz DA: Influence of ionizing radiation on proliferation, c-myc expression and the induction of apoptotic cell death in two breast tumour cell lines differing in p53 status. Int J Radiat Biol. 1997, 72: 547-559. 10.1080/095530097143059.CrossRefPubMed Watson NC, Di YM, Orr MS, Fornari FA, Randolph JK, Magnet KJ, Jain PT, Gewirtz DA: Influence of ionizing radiation on proliferation, c-myc expression and the induction of apoptotic cell death in two breast tumour cell lines differing in p53 status. Int J Radiat Biol. 1997, 72: 547-559. 10.1080/095530097143059.CrossRefPubMed
58.
go back to reference Deckbar D, Jeggo PA, Lobrich M: Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 2011, 46: 271-283. 10.3109/10409238.2011.575764.CrossRefPubMedPubMedCentral Deckbar D, Jeggo PA, Lobrich M: Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 2011, 46: 271-283. 10.3109/10409238.2011.575764.CrossRefPubMedPubMedCentral
59.
go back to reference Kawabe T: G(2) checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004, 3: 513-519.PubMed Kawabe T: G(2) checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004, 3: 513-519.PubMed
60.
go back to reference Gewirtz DA: Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat. 2000, 62: 223-235. 10.1023/A:1006414422919.CrossRefPubMed Gewirtz DA: Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat. 2000, 62: 223-235. 10.1023/A:1006414422919.CrossRefPubMed
Metadata
Title
RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation
Authors
Ying Yan
Patrick M Greer
Phu T Cao
Ryan H Kolb
Kenneth H Cowan
Publication date
01-04-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3164

Other articles of this Issue 2/2012

Breast Cancer Research 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine