Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Research

Quantitative evaluation for spasticity of calf muscle after botulinum toxin injection in patients with cerebral palsy: a pilot study

Authors: Yu-Ching Lin, I-Ling Lin, Te-Feng Arthur Chou, Hsin-Min Lee

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

Cerebral palsy (CP) is the most common pediatric disease to cause motor disability. Two common symptoms in CP are spasticity and contracture. If this occurred in the ankle plantar flexors of children with CP, it will impair their gait and active daily living profoundly. Most children with CP receive botulinum toxin type A (BoNT-A) injection to reduce muscle tone, but a knowledge gap exists in the understanding of changes of neural and non-neural components of spasticity after injection. The purpose of this study was to determine if our device for quantitative modified Tardieu approach (QMTA) is a valid method to assess spasticity of calf muscles after botulinum toxin injection.

Methods

In this study, we intended to develop a device for quantitative measurement of spasticity in calf muscles based on the modified Tardieu scale (MTS) and techniques of biomedical engineering. Our QMTA measures the angular displacement and resistance of stretched joint with a device that is light, portable and can be operated similar to conventional approaches for MTS. The static (R2), dynamic (R1) and R2-R1 angles derived from the reactive signals collected by the miniature sensors are used to represent the non-neural and neural components of stretched spastic muscles. Four children with CP were recruited to assess the change in spasticity in their gastrocnemius muscles before and 4 weeks after BoNT-A injection.

Results

A simulated ankle model validated the performance of our device in measuring joint displacement and estimating the angle of catch. Data from our participants with CP showed that R2 and R2-R1 improved significantly after BoNT-A administration. It indicates both neural and non-neural components of the spastic gastrocnemius muscles improved at four weeks after BoNT-A injection in children with CP.

Conclusion

Our device for QMTA can objectively measure the changes in spasticity of the gastrocnemius muscle in children with cerebral palsy after BoNT-A injection.
Literature
1.
go back to reference Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed
2.
go back to reference Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV. Cerebral palsy epidemiology: Where are We Now and where are We going? Dev Med Child Neurol. 1992;34:547–51.CrossRefPubMed Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV. Cerebral palsy epidemiology: Where are We Now and where are We going? Dev Med Child Neurol. 1992;34:547–51.CrossRefPubMed
4.
go back to reference O’Dwyer NJ, Ada L. Reflex hyperexcitability and muscle contracture in relation to spastic hypertonia. Curr Opin Neurol. 1996;9:451–5.CrossRefPubMed O’Dwyer NJ, Ada L. Reflex hyperexcitability and muscle contracture in relation to spastic hypertonia. Curr Opin Neurol. 1996;9:451–5.CrossRefPubMed
5.
go back to reference O’Dwyer NJ, Ada L, Neilson PD. Spasticity and muscle contracture following stroke. Brain. 1996;119:1737–49.CrossRefPubMed O’Dwyer NJ, Ada L, Neilson PD. Spasticity and muscle contracture following stroke. Brain. 1996;119:1737–49.CrossRefPubMed
6.
go back to reference Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6:725–33.CrossRefPubMed Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6:725–33.CrossRefPubMed
7.
go back to reference Hoare B. Rationale for using botulinum toxin a as an adjunct to upper limb rehabilitation in children with cerebral palsy. J Child Neurol. 2014;29:1066–76.CrossRefPubMed Hoare B. Rationale for using botulinum toxin a as an adjunct to upper limb rehabilitation in children with cerebral palsy. J Child Neurol. 2014;29:1066–76.CrossRefPubMed
8.
go back to reference Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55:885–910.CrossRefPubMed Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55:885–910.CrossRefPubMed
9.
go back to reference World Health Organization. International classification of functioning, disability and health (ICF). Geneva: World Health Organization; 2001. World Health Organization. International classification of functioning, disability and health (ICF). Geneva: World Health Organization; 2001.
10.
go back to reference Lin YC, Huang CY, Lin IL, Shieh JY, Chung YT, Chen KL. Evaluating functional outcomes of botulinum toxin type a injection combined with occupational therapy in the upper limbs of children with cerebral palsy: a 9-month follow-Up from the perspectives of both child and caregiver. PLoS One. 2015;10:e0142769.CrossRefPubMedPubMedCentral Lin YC, Huang CY, Lin IL, Shieh JY, Chung YT, Chen KL. Evaluating functional outcomes of botulinum toxin type a injection combined with occupational therapy in the upper limbs of children with cerebral palsy: a 9-month follow-Up from the perspectives of both child and caregiver. PLoS One. 2015;10:e0142769.CrossRefPubMedPubMedCentral
11.
go back to reference Lance JW. Spasticity: disordered motor control. In: Feldman RG, Young RR, Koella WP, editors. Symposium Synopsis. Chicago: Year Book Medical Publishers; 1980. p. 485–94. Lance JW. Spasticity: disordered motor control. In: Feldman RG, Young RR, Koella WP, editors. Symposium Synopsis. Chicago: Year Book Medical Publishers; 1980. p. 485–94.
12.
go back to reference Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Task force on childhood motor D. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111:89–97.CrossRef Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Task force on childhood motor D. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111:89–97.CrossRef
13.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed
14.
go back to reference Boyd RN, Graham HK. Objective measurement of clinical findings in the use of botulinum toxin type a for the management of children with cerebral palsy. Eur J Neurol. 1999;6:s23–35.CrossRef Boyd RN, Graham HK. Objective measurement of clinical findings in the use of botulinum toxin type a for the management of children with cerebral palsy. Eur J Neurol. 1999;6:s23–35.CrossRef
15.
go back to reference Boyd RN, Pliatsios V, Graham HK. Use of objective clinical measures in prediciting response to botulinum toxin a in children with cerebral palsy. Dev Med Child Neurol. 1998;40:28–9. Boyd RN, Pliatsios V, Graham HK. Use of objective clinical measures in prediciting response to botulinum toxin a in children with cerebral palsy. Dev Med Child Neurol. 1998;40:28–9.
16.
go back to reference Boyd RN. Validity of a clinical measure of spasticity in children with cerebral palsy in a double-blinded randomized clinical trial. Dev Med Child Neurol. 1998;40:7. Boyd RN. Validity of a clinical measure of spasticity in children with cerebral palsy in a double-blinded randomized clinical trial. Dev Med Child Neurol. 1998;40:7.
17.
go back to reference Brashear A, Zafonte R, Corcoran M, Galvez-Jimenez N, Gracie JM, Gordon MF, et al. Inter- and intrarater reliability of the Ashworth scale and the disability assessment scale in patients with upper-limb poststroke spasticity. Arch Phys Med Rehabil. 2002;83:1349–54.CrossRefPubMed Brashear A, Zafonte R, Corcoran M, Galvez-Jimenez N, Gracie JM, Gordon MF, et al. Inter- and intrarater reliability of the Ashworth scale and the disability assessment scale in patients with upper-limb poststroke spasticity. Arch Phys Med Rehabil. 2002;83:1349–54.CrossRefPubMed
18.
go back to reference Platz T, Eickhof C, Nuyens G, Vuadens P. Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil. 2005;27:7–18.CrossRefPubMed Platz T, Eickhof C, Nuyens G, Vuadens P. Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil. 2005;27:7–18.CrossRefPubMed
19.
go back to reference Fleuren JF, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, Nene AV. Stop using the Ashworth scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2010;81:46–52.CrossRefPubMed Fleuren JF, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, Nene AV. Stop using the Ashworth scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2010;81:46–52.CrossRefPubMed
20.
go back to reference Patrick E, Ada L. The Tardieu scale differentiates contracture from spasticity whereas the Ashworth scale is confounded by it. Clin Rehabil. 2006;20:173–82.CrossRefPubMed Patrick E, Ada L. The Tardieu scale differentiates contracture from spasticity whereas the Ashworth scale is confounded by it. Clin Rehabil. 2006;20:173–82.CrossRefPubMed
21.
go back to reference Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu scale for the measurement of spasticity. Disabil Rehabil. 2006;28:899–907.CrossRefPubMed Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu scale for the measurement of spasticity. Disabil Rehabil. 2006;28:899–907.CrossRefPubMed
22.
go back to reference van den Noort JC, Scholtes VA, Becher JG, Harlaar J. Evaluation of the catch in spasticity assessment in children with cerebral palsy. Arch Phys Med Rehabil. 2010;91:615–23.CrossRefPubMed van den Noort JC, Scholtes VA, Becher JG, Harlaar J. Evaluation of the catch in spasticity assessment in children with cerebral palsy. Arch Phys Med Rehabil. 2010;91:615–23.CrossRefPubMed
23.
go back to reference van den Noort JC, Scholtes VA, Harlaar J. Evaluation of clinical spasticity assessment in cerebral palsy using inertial sensors. Gait Posture. 2009;30:138–43.CrossRefPubMed van den Noort JC, Scholtes VA, Harlaar J. Evaluation of clinical spasticity assessment in cerebral palsy using inertial sensors. Gait Posture. 2009;30:138–43.CrossRefPubMed
24.
go back to reference Bar-On L, Aertbelie¨n E, Molenaers G, Bruyninckx H, Monari D, Jaspers E, et al. Comprehensive quantification of the spastic catch in children with cerebral palsy. Res Dev Disabil. 2013;34:386–96.CrossRef Bar-On L, Aertbelie¨n E, Molenaers G, Bruyninckx H, Monari D, Jaspers E, et al. Comprehensive quantification of the spastic catch in children with cerebral palsy. Res Dev Disabil. 2013;34:386–96.CrossRef
25.
go back to reference Bar-On L, Aertbeliën E, Wambacq H, Severijns D, Lambrecht K, Dan B, et al. A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait Posture. 2013;38:141–7.CrossRefPubMed Bar-On L, Aertbeliën E, Wambacq H, Severijns D, Lambrecht K, Dan B, et al. A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait Posture. 2013;38:141–7.CrossRefPubMed
26.
go back to reference de Vlugt E, de Groot JH, Schenkeveld KE, Arendzen JH, van der Helm FC, Meskers CG. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil. 2010;7:35.CrossRefPubMedPubMedCentral de Vlugt E, de Groot JH, Schenkeveld KE, Arendzen JH, van der Helm FC, Meskers CG. The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil. 2010;7:35.CrossRefPubMedPubMedCentral
27.
go back to reference de Gooijer-van de Groep KL, de Vlugt E, de Groot JH, van der Heijden-Maessen HC, Wielheesen DH, van Wijlen-Hempel RM, et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. 2013;10:81.CrossRef de Gooijer-van de Groep KL, de Vlugt E, de Groot JH, van der Heijden-Maessen HC, Wielheesen DH, van Wijlen-Hempel RM, et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. 2013;10:81.CrossRef
28.
go back to reference Hong S, Park S. Minimal-drift heading measurement using a MEMS gyro for indoor mobile robots. Sensors. 2008;8:e7287.CrossRef Hong S, Park S. Minimal-drift heading measurement using a MEMS gyro for indoor mobile robots. Sensors. 2008;8:e7287.CrossRef
29.
30.
go back to reference Park GY, Kwon DR. Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic cerebral palsy. Arch Phys Med Rehabil. 2012;93:2085–9.CrossRefPubMed Park GY, Kwon DR. Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic cerebral palsy. Arch Phys Med Rehabil. 2012;93:2085–9.CrossRefPubMed
31.
go back to reference Alhusaini AA, Crosbie J, Shepherd RB, Dean CM, Scheinberg A. No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy. Dev Med Child Neurol. 2011;53:553–8.CrossRefPubMed Alhusaini AA, Crosbie J, Shepherd RB, Dean CM, Scheinberg A. No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy. Dev Med Child Neurol. 2011;53:553–8.CrossRefPubMed
32.
go back to reference Scholtes VA, Becher JG, Beelen A, Lankhorst GJ. Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Dev Med Child Neurol. 2006;48:64–73.CrossRefPubMed Scholtes VA, Becher JG, Beelen A, Lankhorst GJ. Clinical assessment of spasticity in children with cerebral palsy: a critical review of available instruments. Dev Med Child Neurol. 2006;48:64–73.CrossRefPubMed
33.
go back to reference Kelly B, MacKay-Lyons MJ, Berryman S, Hyndman J, Wood E. Assessment protocol for serial casting after botulinum toxin a injections to treat equinus gait. Pediatr Phys Ther. 2008;20:233–41.CrossRefPubMed Kelly B, MacKay-Lyons MJ, Berryman S, Hyndman J, Wood E. Assessment protocol for serial casting after botulinum toxin a injections to treat equinus gait. Pediatr Phys Ther. 2008;20:233–41.CrossRefPubMed
34.
go back to reference Koman LA, Brashear A, Rosenfeld S, Chambers H, Russman B, Rang M, et al. Botulinum toxin type a neuromuscular blockade in the treatment of equinus foot deformity in cerebral palsy: a multicenter, open-label clinical trial. Pediatrics. 2001;108:1062–71.CrossRefPubMed Koman LA, Brashear A, Rosenfeld S, Chambers H, Russman B, Rang M, et al. Botulinum toxin type a neuromuscular blockade in the treatment of equinus foot deformity in cerebral palsy: a multicenter, open-label clinical trial. Pediatrics. 2001;108:1062–71.CrossRefPubMed
35.
go back to reference Tedroff K, Granath F, Forssberg H, Haglund-Akerlind Y. Long-term effects of botulinum toxin a in children with cerebral palsy. Dev Med Child Neurol. 2009;51:120–7.CrossRefPubMed Tedroff K, Granath F, Forssberg H, Haglund-Akerlind Y. Long-term effects of botulinum toxin a in children with cerebral palsy. Dev Med Child Neurol. 2009;51:120–7.CrossRefPubMed
36.
go back to reference Dodd SL, Selsby J, Payne A, Judge A, Dott C. Botulinum neurotoxin type a causes shifts in myosin heavy chain composition in muscle. Toxicon. 2005;46:196–203.CrossRefPubMed Dodd SL, Selsby J, Payne A, Judge A, Dott C. Botulinum neurotoxin type a causes shifts in myosin heavy chain composition in muscle. Toxicon. 2005;46:196–203.CrossRefPubMed
37.
go back to reference Legerlotz K, Matthews KG, McMahon CD, Smith HK. Botulinum toxin-induced paralysis leads to slower myosin heavy chain isoform composition and reduced titin content in juvenile rat gastrocnemius muscle. Muscle Nerve. 2009;39:472–9.CrossRefPubMed Legerlotz K, Matthews KG, McMahon CD, Smith HK. Botulinum toxin-induced paralysis leads to slower myosin heavy chain isoform composition and reduced titin content in juvenile rat gastrocnemius muscle. Muscle Nerve. 2009;39:472–9.CrossRefPubMed
38.
go back to reference Sutherland DH, Kaufman KR, Wyatt MP, Chambers HG, Mubarak SJ. Double-blind study of botulinum A toxin injections into the gastrocnemius muscle in patients with cerebral palsy. Gait Posture. 1999;10:1–9. Sutherland DH, Kaufman KR, Wyatt MP, Chambers HG, Mubarak SJ. Double-blind study of botulinum A toxin injections into the gastrocnemius muscle in patients with cerebral palsy. Gait Posture. 1999;10:1–9.
39.
go back to reference Lorentzen J, Grey MJ, Geertsen SS, Biering-Sorensen F, Brunton K, Gorassini M, et al. Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals. Clin Neurophysiol. 2012;123:1371–82. Lorentzen J, Grey MJ, Geertsen SS, Biering-Sorensen F, Brunton K, Gorassini M, et al. Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals. Clin Neurophysiol. 2012;123:1371–82.
40.
go back to reference Bar-On L, Desloovere K, Molenaers G, Harlaar J, Kindt T, Aertbeliën E. Identification of the neural component of torque during manually-applied spasticity assessments in children with cerebral palsy. Gait Posture. 2014;40:346–51. Bar-On L, Desloovere K, Molenaers G, Harlaar J, Kindt T, Aertbeliën E. Identification of the neural component of torque during manually-applied spasticity assessments in children with cerebral palsy. Gait Posture. 2014;40:346–51.
Metadata
Title
Quantitative evaluation for spasticity of calf muscle after botulinum toxin injection in patients with cerebral palsy: a pilot study
Authors
Yu-Ching Lin
I-Ling Lin
Te-Feng Arthur Chou
Hsin-Min Lee
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0135-8

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue