Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2014

01-02-2014 | Original Article

Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study

Authors: Sarah Abdulla, Ali Salavati, Babak Saboury, Sandip Basu, Drew A. Torigian, Abass Alavi

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2014

Login to get access

Abstract

Purpose

Radiation pneumonitis is the most severe dose-limiting complication in patients receiving thoracic radiation therapy. The aim of this study was to quantify global lung inflammation following radiation therapy using FDG PET/CT.

Methods

We studied 20 subjects with stage III non-small-cell lung carcinoma who had undergone FDG PET/CT imaging before and after radiation therapy. On all PET/CT studies, the sectional lung volume (sLV) of each lung was calculated from each slice by multiplying the lung area by slice thickness. The sectional lung glycolysis (sLG) was calculated by multiplying the sLV and the lung sectional mean standardized uptake value (sSUVmean) on each slice passing through the lung. The lung volume (LV) was calculated by adding all sLVs from the lung, and the global lung glycolysis (GLG) was calculated by adding all sLGs from the lung. Finally, the lung SUVmean was calculated by dividing the GLG by the LV. The amount of inflammation in the lung parenchyma directly receiving radiation therapy was calculated by subtracting tumor measurements from GLG.

Results

In the lung directly receiving radiation therapy, the lung parenchyma SUVmean and global lung parenchymal glycolysis were significantly increased following therapy. In the contralateral lung (internal control), no significant changes were observed in lung SUVmean or GLG following radiation therapy.

Conclusion

Global lung parenchymal glycolysis and lung parenchymal SUVmean may serve as potentially useful biomarkers to quantify lung inflammation on FDG PET/CT following thoracic radiation therapy.
Literature
1.
go back to reference Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):444–50. doi:10.1016/j.ijrobp.2012.04.043.PubMedCrossRef Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):444–50. doi:10.​1016/​j.​ijrobp.​2012.​04.​043.PubMedCrossRef
3.
go back to reference Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80(5):1365–71. doi:10.1016/j.ijrobp.2010.04.021.PubMedCrossRef Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80(5):1365–71. doi:10.​1016/​j.​ijrobp.​2010.​04.​021.PubMedCrossRef
7.
go back to reference Marks LB, Spencer DP, Bentel GC, Ray SK, Sherouse GW, Sontag MR, et al. The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. Int J Radiat Oncol Biol Phys. 1993;26(4):659–68.PubMedCrossRef Marks LB, Spencer DP, Bentel GC, Ray SK, Sherouse GW, Sontag MR, et al. The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. Int J Radiat Oncol Biol Phys. 1993;26(4):659–68.PubMedCrossRef
8.
go back to reference Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60(2):412–8. doi:10.1016/j.ijrobp.2004.03.036.PubMedCrossRef Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60(2):412–8. doi:10.​1016/​j.​ijrobp.​2004.​03.​036.PubMedCrossRef
10.
go back to reference McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, et al. [18F]-FDG uptake dose–response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104(1):52–7.PubMedCentralPubMedCrossRef McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, et al. [18F]-FDG uptake dose–response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104(1):52–7.PubMedCentralPubMedCrossRef
15.
go back to reference Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A, et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol. 2010;12(6):657–62. doi:10.1007/s11307-009-0294-0.PubMedCrossRef Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A, et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol. 2010;12(6):657–62. doi:10.​1007/​s11307-009-0294-0.PubMedCrossRef
17.
go back to reference Muijs CT, Schreurs LM, Busz DM, Beukema JC, van der Borden AJ, Pruim J, et al. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol. 2009;93(3):447–53. doi:10.1016/j.radonc.2009.08.030.PubMedCrossRef Muijs CT, Schreurs LM, Busz DM, Beukema JC, van der Borden AJ, Pruim J, et al. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol. 2009;93(3):447–53. doi:10.​1016/​j.​radonc.​2009.​08.​030.PubMedCrossRef
21.
go back to reference Kanzaki R, Higashiyama M, Maeda J, Okami J, Hosoki T, Hasegawa Y, et al. Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients. Interact Cardiovasc Thorac Surg. 2010;10(6):1009–14. doi:10.1510/icvts.2009.227538.PubMedCrossRef Kanzaki R, Higashiyama M, Maeda J, Okami J, Hosoki T, Hasegawa Y, et al. Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients. Interact Cardiovasc Thorac Surg. 2010;10(6):1009–14. doi:10.​1510/​icvts.​2009.​227538.PubMedCrossRef
22.
go back to reference Teo BK, Abelson J, Teo A, Graves EE, Guerrero T, et al. Time interval to FDG PET/CT after mediastinal radiation impacts the dose response of pneumonitis related metabolic activity. Int J Radiat Oncol Biol Phys. 2008;72(1):S67–S8. doi:10.1016/j.ijrobp.2008.06.919.CrossRef Teo BK, Abelson J, Teo A, Graves EE, Guerrero T, et al. Time interval to FDG PET/CT after mediastinal radiation impacts the dose response of pneumonitis related metabolic activity. Int J Radiat Oncol Biol Phys. 2008;72(1):S67–S8. doi:10.​1016/​j.​ijrobp.​2008.​06.​919.CrossRef
25.
go back to reference Hofheinz F, Potzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin. 2012;51(1):9–16. doi:10.3413/Nukmed-0419-11-07.PubMedCrossRef Hofheinz F, Potzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin. 2012;51(1):9–16. doi:10.​3413/​Nukmed-0419-11-07.PubMedCrossRef
26.
go back to reference Schaefer A, Kim YJ, Kremp S, Mai S, Fleckenstein J, Bohnenberger H, et al. PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings. Eur J Nucl Med Mol Imaging. 2013;40(8):1233–44. doi:10.1007/s00259-013-2407-x.PubMedCrossRef Schaefer A, Kim YJ, Kremp S, Mai S, Fleckenstein J, Bohnenberger H, et al. PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings. Eur J Nucl Med Mol Imaging. 2013;40(8):1233–44. doi:10.​1007/​s00259-013-2407-x.PubMedCrossRef
27.
go back to reference Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. doi:10.1007/s00259-008-0875-1.PubMedCrossRef Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. doi:10.​1007/​s00259-008-0875-1.PubMedCrossRef
28.
go back to reference Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, van den Hoff J, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14(1):8–14.PubMed Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, van den Hoff J, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14(1):8–14.PubMed
29.
go back to reference Musiek ES, Saboury B, Mishra S, Chen Y, Reddin JS, Newberg AB, et al. Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer’s disease. Hell J Nucl Med. 2012;15(3):190–6. doi:10.1967/s002449910052.PubMed Musiek ES, Saboury B, Mishra S, Chen Y, Reddin JS, Newberg AB, et al. Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer’s disease. Hell J Nucl Med. 2012;15(3):190–6. doi:10.​1967/​s002449910052.PubMed
31.
go back to reference Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125–32. doi:10.1164/rccm.201201-0051OC.PubMedCrossRef Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125–32. doi:10.​1164/​rccm.​201201-0051OC.PubMedCrossRef
32.
go back to reference Torigian DA, Dam V, Chen X, Saboury B, Udupa JK, Rashid A, et al. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18)F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16(1):12–8. doi:10.1967/s0024499100066.PubMed Torigian DA, Dam V, Chen X, Saboury B, Udupa JK, Rashid A, et al. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18)F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16(1):12–8. doi:10.​1967/​s0024499100066.PubMed
33.
go back to reference Basu S, Zaidi H, Houseni M, Bural G, Udupa J, Acton P, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med. 2007;37(3):223–39. doi:10.1053/j.semnuclmed.2007.01.005.PubMedCrossRef Basu S, Zaidi H, Houseni M, Bural G, Udupa J, Acton P, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med. 2007;37(3):223–39. doi:10.​1053/​j.​semnuclmed.​2007.​01.​005.PubMedCrossRef
34.
go back to reference Basu S, Alavi A. Partial volume correction of standardized uptake values and the dual time point in FDG-PET imaging: should these be routinely employed in assessing patients with cancer? Eur J Nucl Med Mol Imaging. 2007;34(10):1527–9. doi:10.1007/s00259-007-0467-5.PubMedCrossRef Basu S, Alavi A. Partial volume correction of standardized uptake values and the dual time point in FDG-PET imaging: should these be routinely employed in assessing patients with cancer? Eur J Nucl Med Mol Imaging. 2007;34(10):1527–9. doi:10.​1007/​s00259-007-0467-5.PubMedCrossRef
35.
go back to reference Bural G, Torigian DA, Houseni M, Basu S, Srinivas S, Alavi A. Tumor metabolism measured by partial volume corrected standardized uptake value varies considerably in primary and metastatic sites in patients with lung cancer. A new observation. Hell J Nucl Med. 2009;12(3):218–22.PubMed Bural G, Torigian DA, Houseni M, Basu S, Srinivas S, Alavi A. Tumor metabolism measured by partial volume corrected standardized uptake value varies considerably in primary and metastatic sites in patients with lung cancer. A new observation. Hell J Nucl Med. 2009;12(3):218–22.PubMed
36.
go back to reference Petit SF, van Elmpt WJ, Oberije CJ, Vegt E, Dingemans AM, Lambin P, et al. [18F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys. 2011;81(3):698–705. doi:10.1016/j.ijrobp.2010.06.016.PubMedCrossRef Petit SF, van Elmpt WJ, Oberije CJ, Vegt E, Dingemans AM, Lambin P, et al. [18F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys. 2011;81(3):698–705. doi:10.​1016/​j.​ijrobp.​2010.​06.​016.PubMedCrossRef
37.
go back to reference Kong FM, Frey KA, Quint LE, Ten Haken RK, Hayman JA, Kessler M, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol. 2007;25(21):3116–23. doi:10.1200/JCO.2006.10.3747.PubMedCrossRef Kong FM, Frey KA, Quint LE, Ten Haken RK, Hayman JA, Kessler M, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol. 2007;25(21):3116–23. doi:10.​1200/​JCO.​2006.​10.​3747.PubMedCrossRef
38.
go back to reference De Ruysscher D, Houben A, Aerts HJ, Dehing C, Wanders R, Ollers M, et al. Increased (18)F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent Radiation-Induced Lung Toxicity (RILT): a prospective pilot study. Radiother Oncol. 2009;91(3):415–20. doi:10.1016/j.radonc.2009.01.004.PubMedCrossRef De Ruysscher D, Houben A, Aerts HJ, Dehing C, Wanders R, Ollers M, et al. Increased (18)F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent Radiation-Induced Lung Toxicity (RILT): a prospective pilot study. Radiother Oncol. 2009;91(3):415–20. doi:10.​1016/​j.​radonc.​2009.​01.​004.PubMedCrossRef
41.
Metadata
Title
Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study
Authors
Sarah Abdulla
Ali Salavati
Babak Saboury
Sandip Basu
Drew A. Torigian
Abass Alavi
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-013-2579-4

Other articles of this Issue 2/2014

European Journal of Nuclear Medicine and Molecular Imaging 2/2014 Go to the issue