Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2016

Open Access 01-12-2016 | Research

Quantifying selective elbow movements during an exergame in children with neurological disorders: a pilot study

Authors: Hubertus J. A. van Hedel, Nadine Häfliger, Corinna N. Gerber

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2016

Login to get access

Abstract

Background

It is difficult to distinguish between restorative and compensatory mechanisms underlying (pediatric) neurorehabilitation, as objective measures assessing selective voluntary motor control (SVMC) are scarce.

Methods

We aimed to quantify SVMC of elbow movements in children with brain lesions. Children played an airplane game with the glove-based YouGrabber system. Participants were instructed to steer an airplane on a screen through a cloud-free path by correctly applying bilateral elbow flexion and extension movements. Game performance measures were (i) % time on the correct path and (ii) similarity between the ideal flight path and the actually flown path. SVMC was quantified by calculating a correlation coefficient between the derivative of the ideal path and elbow movements. A therapist scored whether the child had used compensatory movements.

Results

Thirty-three children with brain lesions (11 girls; 12.6 ± 3.6 years) participated. Clinical motor and cognitive scores correlated moderately with SVMC (0.50–0.74). Receiver Operating Characteristics analyses showed that SVMC could differentiate well and better than clinical and game performance measures between compensatory and physiological movements.

Conclusions

We conclude that a simple measure assessed while playing a game appears promising in quantifying SVMC. We propose how to improve the methodology, and how this approach can be easily extended to other joints.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103.CrossRefPubMed Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103.CrossRefPubMed
2.
go back to reference Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23:313–9.CrossRefPubMed Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23:313–9.CrossRefPubMed
5.
go back to reference Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW, Taskforce on Childhood Motor Disorders. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118:2159–67.CrossRefPubMed Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW, Taskforce on Childhood Motor Disorders. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118:2159–67.CrossRefPubMed
6.
go back to reference Porter R, Lemon R. Corticospinal Function and Voluntary Movement. USA: Oxford University Press; 1993. Porter R, Lemon R. Corticospinal Function and Voluntary Movement. USA: Oxford University Press; 1993.
7.
go back to reference Dobson F. Assessing selective motor control in children with cerebral palsy. Dev Med Child Neurol. 2010;52:409–10.CrossRefPubMed Dobson F. Assessing selective motor control in children with cerebral palsy. Dev Med Child Neurol. 2010;52:409–10.CrossRefPubMed
8.
go back to reference Meyer-Heim A, van Hedel HJA. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol. 2013;20:139–45.CrossRefPubMed Meyer-Heim A, van Hedel HJA. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol. 2013;20:139–45.CrossRefPubMed
9.
go back to reference Sivan M, O’Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43:181–9.CrossRefPubMed Sivan M, O’Connor RJ, Makower S, Levesley M, Bhakta B. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med. 2011;43:181–9.CrossRefPubMed
10.
go back to reference Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, Holper L, Hägni K, Zimmerli L, Duff A, Schuster C, Bassetti C, Verschure P, Kiper D. Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput. 2007;45:901–7.CrossRefPubMed Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, Holper L, Hägni K, Zimmerli L, Duff A, Schuster C, Bassetti C, Verschure P, Kiper D. Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput. 2007;45:901–7.CrossRefPubMed
11.
go back to reference Wille D, Eng K, Holper L, Chevrier E, Hauser Y, Kiper D, Pyk P, Schlegel S, Meyer-Heim A. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment-a pilot study. Dev Neurorehabil. 2009;12:44–52.CrossRefPubMed Wille D, Eng K, Holper L, Chevrier E, Hauser Y, Kiper D, Pyk P, Schlegel S, Meyer-Heim A. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment-a pilot study. Dev Neurorehabil. 2009;12:44–52.CrossRefPubMed
12.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206–7.PubMed
13.
go back to reference Hislop H, Avers D, Brown M. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination and Performance Testing. 9th ed. Elsevier Saunders, 3251 Riverport Lane, St. Louis, Missouri 63043. 2013. Hislop H, Avers D, Brown M. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination and Performance Testing. 9th ed. Elsevier Saunders, 3251 Riverport Lane, St. Louis, Missouri 63043. 2013.
14.
go back to reference Heyrman L, Molenaers G, Desloovere K, Verheyden G, De Cat J, Monbaliu E, Feys H. A clinical tool to measure trunk control in children with cerebral palsy: The Trunk Control Measurement Scale. Res Dev Disabil. 2011;32:2624–35.CrossRefPubMed Heyrman L, Molenaers G, Desloovere K, Verheyden G, De Cat J, Monbaliu E, Feys H. A clinical tool to measure trunk control in children with cerebral palsy: The Trunk Control Measurement Scale. Res Dev Disabil. 2011;32:2624–35.CrossRefPubMed
15.
go back to reference Ritter N, Kilinc E, Navruz B, Bae Y. Test Review: L. Brown, R. J. Sherbenou, and S. K. Johnsen Test of Nonverbal Intelligence-4 (TONI-4). Austin, TX: PRO-ED, 2010. J Psychoeduc Assess. 2011;29:484–8.CrossRef Ritter N, Kilinc E, Navruz B, Bae Y. Test Review: L. Brown, R. J. Sherbenou, and S. K. Johnsen Test of Nonverbal Intelligence-4 (TONI-4). Austin, TX: PRO-ED, 2010. J Psychoeduc Assess. 2011;29:484–8.CrossRef
16.
go back to reference Eliasson A-C, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Öhrvall A-M, Rosenbaum P. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48:549–54.CrossRefPubMed Eliasson A-C, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Öhrvall A-M, Rosenbaum P. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48:549–54.CrossRefPubMed
17.
go back to reference Morris C, Kurinczuk JJ, Fitzpatrick R, Rosenbaum PL. Reliability of the manual ability classification system for children with cerebral palsy. Dev Med Child Neurol. 2006;48:950–3.CrossRefPubMed Morris C, Kurinczuk JJ, Fitzpatrick R, Rosenbaum PL. Reliability of the manual ability classification system for children with cerebral palsy. Dev Med Child Neurol. 2006;48:950–3.CrossRefPubMed
18.
go back to reference Labruyère R, Gerber CN, Birrer-Brütsch K, Meyer-Heim A, van Hedel HJA. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil. 2013;34:3906–15.CrossRefPubMed Labruyère R, Gerber CN, Birrer-Brütsch K, Meyer-Heim A, van Hedel HJA. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil. 2013;34:3906–15.CrossRefPubMed
19.
go back to reference Gerber CN, Labruyere R, van Hedel HJA. Reliability and Responsiveness of Upper Limb Motor Assessments for Children With Central Neuromotor Disorders: A Systematic Review. Neurorehabil Neural Repair. 2016;30:19–39.CrossRefPubMed Gerber CN, Labruyere R, van Hedel HJA. Reliability and Responsiveness of Upper Limb Motor Assessments for Children With Central Neuromotor Disorders: A Systematic Review. Neurorehabil Neural Repair. 2016;30:19–39.CrossRefPubMed
20.
go back to reference Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. Hoboken: Wiley; 2000.CrossRef Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. Hoboken: Wiley; 2000.CrossRef
21.
go back to reference Mitteregger E, Marsico P, Balzer J, van Hedel HJA. Translation and construct validity of the Trunk Control Measurement Scale in children and youths with brain lesions. Res Dev Disabil. 2015;45–46:343–52.CrossRefPubMed Mitteregger E, Marsico P, Balzer J, van Hedel HJA. Translation and construct validity of the Trunk Control Measurement Scale in children and youths with brain lesions. Res Dev Disabil. 2015;45–46:343–52.CrossRefPubMed
22.
go back to reference Balzer J, Marsico P, Mitteregger E, van der Linden ML, Mercer TH, van Hedel HJ. Construct validity and reliability of the Selective Control Assessment of the Lower Extremity in children with cerebral palsy. Dev Med Child Neurol. 2016;58(2):167–72. Balzer J, Marsico P, Mitteregger E, van der Linden ML, Mercer TH, van Hedel HJ. Construct validity and reliability of the Selective Control Assessment of the Lower Extremity in children with cerebral palsy. Dev Med Child Neurol. 2016;58(2):167–72.
24.
go back to reference Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krägeloh-Mann I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol. 2004;56:854–63.CrossRefPubMed Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krägeloh-Mann I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann Neurol. 2004;56:854–63.CrossRefPubMed
25.
go back to reference Wagner LV, Davids JR, Hardin JW. Selective Control of the Upper Extremity Scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2015; Advance online publication. Wagner LV, Davids JR, Hardin JW. Selective Control of the Upper Extremity Scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2015; Advance online publication.
26.
go back to reference Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine (Phila Pa 1976). 2000;25:3186–91.CrossRef Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine (Phila Pa 1976). 2000;25:3186–91.CrossRef
28.
go back to reference Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51:607–14.CrossRefPubMed Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51:607–14.CrossRefPubMed
Metadata
Title
Quantifying selective elbow movements during an exergame in children with neurological disorders: a pilot study
Authors
Hubertus J. A. van Hedel
Nadine Häfliger
Corinna N. Gerber
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2016
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-016-0200-3

Other articles of this Issue 1/2016

Journal of NeuroEngineering and Rehabilitation 1/2016 Go to the issue