Skip to main content
Top
Published in: Respiratory Research 1/2021

Open Access 01-12-2021 | Pulmonary Hypertension | Research

The alveolar epithelial cells are involved in pulmonary vascular remodeling and constriction of hypoxic pulmonary hypertension

Authors: Yanxia Wang, Xiaoming Li, Wen Niu, Jian Chen, Bo Zhang, Xiumin Zhang, Yingmei Wang, Shaokang Dang, Zhichao Li

Published in: Respiratory Research | Issue 1/2021

Login to get access

Abstract

Background

Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. Alveolar epithelial cells (AECs) primarily sense alveolar hypoxia, but the role of AECs in HPH remains unclear. In this study, we explored whether AECs are involved in pulmonary vascular remodeling and constriction.

Methods

In the constructed rat HPH model, hemodynamic and morphological characteristics were measured. By treating AECs with hypoxia, we further detected the levels of superoxide dismutase 2 (SOD2), catalase (CAT), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), respectively. To detect the effects of AECs on pulmonary vascular remodeling and constriction, AECs and pulmonary artery smooth cells (PASMCs) were co-cultured under hypoxia, and PASMCs and isolated pulmonary artery (PA) were treated with AECs hypoxic culture medium. In addition, to explore the mechanism of AECs on pulmonary vascular remodeling and constriction, ROS inhibitor N-acetylcysteine (NAC) was used.

Results

Hypoxia caused pulmonary vascular remodeling and increased pulmonary artery pressure, but had little effect on non-pulmonary vessels in vivo. Meanwhile, in vitro, hypoxia promoted the imbalance of SOD2 and CAT in AECs, leading to increased ROS and hydrogen peroxide (H2O2) production in the AECs culture medium. In addition, AECs caused the proliferation of co-cultured PASMCs under hypoxia, and the hypoxic culture medium of AECs enhanced the constriction of isolated PA. However, treatment with ROS inhibitor NAC effectively alleviated the above effects.

Conclusion

The findings of present study demonstrated that AECs were involved in pulmonary vascular remodeling and constriction under hypoxia by paracrine H2O2 into the pulmonary vascular microenvironment.
Literature
1.
go back to reference Barbera JA, Blanco I. Pulmonary hypertension in patients with chronic obstructive pulmonary disease: advances in pathophysiology and management. Drugs. 2009;69:1153–71.CrossRef Barbera JA, Blanco I. Pulmonary hypertension in patients with chronic obstructive pulmonary disease: advances in pathophysiology and management. Drugs. 2009;69:1153–71.CrossRef
2.
go back to reference Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115:1132–46.CrossRef Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115:1132–46.CrossRef
3.
go back to reference Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and treatment of high-altitude pulmonary vascular disease. Circulation. 2015;131:582–90.CrossRef Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and treatment of high-altitude pulmonary vascular disease. Circulation. 2015;131:582–90.CrossRef
4.
go back to reference Yan D, Li G, Zhang Y, Liu Y. Angiotensin-converting enzyme 2 activation suppresses pulmonary vascular remodeling by inducing apoptosis through the Hippo signaling pathway in rats with pulmonary arterial hypertension. Clin Exp Hypertens. 2019;41:589–98.CrossRef Yan D, Li G, Zhang Y, Liu Y. Angiotensin-converting enzyme 2 activation suppresses pulmonary vascular remodeling by inducing apoptosis through the Hippo signaling pathway in rats with pulmonary arterial hypertension. Clin Exp Hypertens. 2019;41:589–98.CrossRef
5.
go back to reference Liu M, Wang Y, Zheng L, Zheng W, Dong K, Chen S, Zhang B, Li Z. Fasudil reversedMCT-inducedand chronic hypoxia-induced pulmonary hypertension by attenuating oxidative stress and inhibiting the expression of Trx1 and HIF-1alpha. Respir Physiol Neurobiol. 2014;201:38–46.CrossRef Liu M, Wang Y, Zheng L, Zheng W, Dong K, Chen S, Zhang B, Li Z. Fasudil reversedMCT-inducedand chronic hypoxia-induced pulmonary hypertension by attenuating oxidative stress and inhibiting the expression of Trx1 and HIF-1alpha. Respir Physiol Neurobiol. 2014;201:38–46.CrossRef
6.
go back to reference Zakynthinos E, Daniil Z, Papanikolaou J, Makris D. Pulmonary hypertension in COPD: pathophysiology and therapeutic targets. Curr Drug Targets. 2011;12:501–13.CrossRef Zakynthinos E, Daniil Z, Papanikolaou J, Makris D. Pulmonary hypertension in COPD: pathophysiology and therapeutic targets. Curr Drug Targets. 2011;12:501–13.CrossRef
7.
go back to reference Wang LN, Yu WC, Du CH, Tong L, Cheng ZZ. Hypoxia is involved in hypoxic pulmonary hypertension through inhibiting the activation of FGF2 by miR-203. Eur Rev Med Pharmacol Sci. 2018;22:8866–76.PubMed Wang LN, Yu WC, Du CH, Tong L, Cheng ZZ. Hypoxia is involved in hypoxic pulmonary hypertension through inhibiting the activation of FGF2 by miR-203. Eur Rev Med Pharmacol Sci. 2018;22:8866–76.PubMed
8.
go back to reference Boger R, Hannemann J. Dual role of the L-arginine-ADMA-NO pathway in systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction. Pulm Circ. 2020;10:2045894020918850.CrossRef Boger R, Hannemann J. Dual role of the L-arginine-ADMA-NO pathway in systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction. Pulm Circ. 2020;10:2045894020918850.CrossRef
9.
go back to reference Hough RF, Bhattacharya S, Bhattacharya J. Crosstalk signaling between alveoli and capillaries. Pulm Circ. 2018;8:2045894018783735.CrossRef Hough RF, Bhattacharya S, Bhattacharya J. Crosstalk signaling between alveoli and capillaries. Pulm Circ. 2018;8:2045894018783735.CrossRef
10.
go back to reference Signorelli S, Jennings P, Leonard MO, Pfaller W. Differential effects of hypoxic stress in alveolar epithelial cells and microvascular endothelial cells. Cell Physiol Biochem. 2010;25:135–44.CrossRef Signorelli S, Jennings P, Leonard MO, Pfaller W. Differential effects of hypoxic stress in alveolar epithelial cells and microvascular endothelial cells. Cell Physiol Biochem. 2010;25:135–44.CrossRef
11.
go back to reference Makino A, Firth AL, Yuan JX. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr Physiol. 2011;1:1555–602.PubMedPubMedCentral Makino A, Firth AL, Yuan JX. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr Physiol. 2011;1:1555–602.PubMedPubMedCentral
12.
go back to reference Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol. 2006;87:463–74.CrossRef Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol. 2006;87:463–74.CrossRef
13.
go back to reference Luo Y, Dong HY, Zhang B, Feng Z, Liu Y, Gao YQ, Dong MQ, Li ZC. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation. Hypertension. 2015;65:414–20.CrossRef Luo Y, Dong HY, Zhang B, Feng Z, Liu Y, Gao YQ, Dong MQ, Li ZC. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation. Hypertension. 2015;65:414–20.CrossRef
14.
go back to reference Gore B, Izikki M, Mercier O, Dewachter L, Fadel E, Humbert M, Dartevelle P, Simonneau G, Naeije R, Lebrin F, Eddahibi S. Key role of the endothelial TGF-beta/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS ONE. 2014;9:e100310.CrossRef Gore B, Izikki M, Mercier O, Dewachter L, Fadel E, Humbert M, Dartevelle P, Simonneau G, Naeije R, Lebrin F, Eddahibi S. Key role of the endothelial TGF-beta/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS ONE. 2014;9:e100310.CrossRef
15.
go back to reference Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol. 1985;2017(123):1635–46. Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol. 1985;2017(123):1635–46.
16.
go back to reference Smith KA, Schumacker PT. Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction. J Physiol. 2019;597:1033–43.CrossRef Smith KA, Schumacker PT. Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction. J Physiol. 2019;597:1033–43.CrossRef
18.
go back to reference Xu Z, Rothstein SJ. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal Behav. 2018;13:e1451708.CrossRef Xu Z, Rothstein SJ. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal Behav. 2018;13:e1451708.CrossRef
19.
go back to reference Zuo L, Chuang CC, Clark AD, Garrison DE, Kuhlman JL, Sypert DC. Reactive oxygen species in COPD-related vascular remodeling. Adv Exp Med Biol. 2017;967:399–411.CrossRef Zuo L, Chuang CC, Clark AD, Garrison DE, Kuhlman JL, Sypert DC. Reactive oxygen species in COPD-related vascular remodeling. Adv Exp Med Biol. 2017;967:399–411.CrossRef
20.
go back to reference Jaitovich A, Jourd’heuil D. A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension. Adv Exp Med Biol. 2017;967:71–81.CrossRef Jaitovich A, Jourd’heuil D. A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension. Adv Exp Med Biol. 2017;967:71–81.CrossRef
21.
go back to reference Roberto D, Micucci P, Sebastian T, Graciela F, Anesini C. Antioxidant activity of limonene on normal murine lymphocytes: relation to H2O2 modulation and cell proliferation. Basic Clin Pharmacol Toxicol. 2010;106:38–44.PubMed Roberto D, Micucci P, Sebastian T, Graciela F, Anesini C. Antioxidant activity of limonene on normal murine lymphocytes: relation to H2O2 modulation and cell proliferation. Basic Clin Pharmacol Toxicol. 2010;106:38–44.PubMed
22.
go back to reference Hwang JW, Kim EK, Lee SJ, Kim YS, Moon SH, Jeon BT, Sung SH, Kim ET, Park PJ. Antioxidant activity and protective effect of anthocyanin oligomers on H(2)O(2)-triggered G2/M arrest in retinal cells. J Agric Food Chem. 2012;60:4282–8.CrossRef Hwang JW, Kim EK, Lee SJ, Kim YS, Moon SH, Jeon BT, Sung SH, Kim ET, Park PJ. Antioxidant activity and protective effect of anthocyanin oligomers on H(2)O(2)-triggered G2/M arrest in retinal cells. J Agric Food Chem. 2012;60:4282–8.CrossRef
23.
go back to reference Lo YC, Lin YC, Huang YF, Hsieh CP, Wu CC, Chang IL, Chen CL, Cheng CH, Chen HY. Carnosol-induced ROS inhibits cell viability of human osteosarcoma by apoptosis and autophagy. Am J Chin Med. 2017;45:1761–72.CrossRef Lo YC, Lin YC, Huang YF, Hsieh CP, Wu CC, Chang IL, Chen CL, Cheng CH, Chen HY. Carnosol-induced ROS inhibits cell viability of human osteosarcoma by apoptosis and autophagy. Am J Chin Med. 2017;45:1761–72.CrossRef
24.
go back to reference Costa RM, Filgueira FP, Tostes RC, Carvalho MH, Akamine EH, Lobato NS. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction. Vascul Pharmacol. 2016;84:28–37.CrossRef Costa RM, Filgueira FP, Tostes RC, Carvalho MH, Akamine EH, Lobato NS. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction. Vascul Pharmacol. 2016;84:28–37.CrossRef
25.
go back to reference Li Z, Fang F, Xu F. Effects of different states of oxidative stress on fetal rat alveolar type II epithelial cells in vitro and ROSinduced changes in Wnt signaling pathway expression. Mol Med Rep. 2013;7:1528–32.CrossRef Li Z, Fang F, Xu F. Effects of different states of oxidative stress on fetal rat alveolar type II epithelial cells in vitro and ROSinduced changes in Wnt signaling pathway expression. Mol Med Rep. 2013;7:1528–32.CrossRef
26.
go back to reference Sigaud S, Evelson P, Gonzalez-Flecha B. H2O2-induced proliferation of primary alveolar epithelial cells is mediated by MAP kinases. Antioxid Redox Signal. 2005;7:6–13.CrossRef Sigaud S, Evelson P, Gonzalez-Flecha B. H2O2-induced proliferation of primary alveolar epithelial cells is mediated by MAP kinases. Antioxid Redox Signal. 2005;7:6–13.CrossRef
27.
go back to reference Wang YX, Liu ML, Zhang B, Fu EQ, Li ZC. Fasudil alleviated hypoxia-induced pulmonary hypertension by stabilizing the expression of angiotensin-(1–7) in rats. Eur Rev Med Pharmacol Sci. 2016;20:3304–12.PubMed Wang YX, Liu ML, Zhang B, Fu EQ, Li ZC. Fasudil alleviated hypoxia-induced pulmonary hypertension by stabilizing the expression of angiotensin-(1–7) in rats. Eur Rev Med Pharmacol Sci. 2016;20:3304–12.PubMed
28.
go back to reference Takano M, Nagahiro M, Yumoto R. Transport Mechanism of Nicotine in Primary Cultured Alveolar Epithelial Cells. J Pharm Sci. 2016;105:982–8.CrossRef Takano M, Nagahiro M, Yumoto R. Transport Mechanism of Nicotine in Primary Cultured Alveolar Epithelial Cells. J Pharm Sci. 2016;105:982–8.CrossRef
29.
go back to reference Madden JA, Vadula MS, Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol. 1992;263:L384-393.CrossRef Madden JA, Vadula MS, Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol. 1992;263:L384-393.CrossRef
30.
go back to reference Hauge A. Hypoxia and pulmonary vascular resistance. The relative effects of pulmonary arterial and alveolar PO2. Acta Physiol Scand. 1969;76:121–30.CrossRef Hauge A. Hypoxia and pulmonary vascular resistance. The relative effects of pulmonary arterial and alveolar PO2. Acta Physiol Scand. 1969;76:121–30.CrossRef
31.
go back to reference Lourenco AP, Fontoura D, Henriques-Coelho T, Leite-Moreira AF. Current pathophysiological concepts and management of pulmonary hypertension. Int J Cardiol. 2012;155:350–61.CrossRef Lourenco AP, Fontoura D, Henriques-Coelho T, Leite-Moreira AF. Current pathophysiological concepts and management of pulmonary hypertension. Int J Cardiol. 2012;155:350–61.CrossRef
32.
go back to reference Song T, Zheng YM, Wang YX. Cross talk between mitochondrial reactive oxygen species and sarcoplasmic reticulum calcium in pulmonary arterial smooth muscle cells. Adv Exp Med Biol. 2017;967:289–98.CrossRef Song T, Zheng YM, Wang YX. Cross talk between mitochondrial reactive oxygen species and sarcoplasmic reticulum calcium in pulmonary arterial smooth muscle cells. Adv Exp Med Biol. 2017;967:289–98.CrossRef
33.
go back to reference McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.CrossRef McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.CrossRef
34.
go back to reference Masri FA, Comhair SA, Dostanic-Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC. Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci. 2008;1:99–106.CrossRef Masri FA, Comhair SA, Dostanic-Larson I, Kaneko FT, Dweik RA, Arroliga AC, Erzurum SC. Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin Transl Sci. 2008;1:99–106.CrossRef
35.
go back to reference Nozik-Grayck E, Woods C, Stearman RS, Venkataraman S, Ferguson BS, Swain K, Bowler RP, Geraci MW, Ihida-Stansbury K, Stenmark KR, et al. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;311:L124-134.CrossRef Nozik-Grayck E, Woods C, Stearman RS, Venkataraman S, Ferguson BS, Swain K, Bowler RP, Geraci MW, Ihida-Stansbury K, Stenmark KR, et al. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;311:L124-134.CrossRef
36.
go back to reference Hirobe T, Shibata T, Sato K. Human fibroblasts treated with hydrogen peroxide stimulate human melanoblast proliferation and melanocyte differentiation, but inhibit melanocyte proliferation in serum-free co-culture system. J Dermatol Sci. 2016;84:282–95.CrossRef Hirobe T, Shibata T, Sato K. Human fibroblasts treated with hydrogen peroxide stimulate human melanoblast proliferation and melanocyte differentiation, but inhibit melanocyte proliferation in serum-free co-culture system. J Dermatol Sci. 2016;84:282–95.CrossRef
37.
go back to reference Park WH. Exogenous H2O2 induces growth inhibition and cell death of human pulmonary artery smooth muscle cells via glutathione depletion. Mol Med Rep. 2016;14:936–42.CrossRef Park WH. Exogenous H2O2 induces growth inhibition and cell death of human pulmonary artery smooth muscle cells via glutathione depletion. Mol Med Rep. 2016;14:936–42.CrossRef
38.
go back to reference Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS ONE. 2014;9:e98532.CrossRef Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS ONE. 2014;9:e98532.CrossRef
39.
go back to reference Jin N, Rhoades RA. Activation of tyrosine kinases in H2O2-induced contraction in pulmonaryartery. Am J Physiol. 1997;272:H2686-2692.CrossRef Jin N, Rhoades RA. Activation of tyrosine kinases in H2O2-induced contraction in pulmonaryartery. Am J Physiol. 1997;272:H2686-2692.CrossRef
Metadata
Title
The alveolar epithelial cells are involved in pulmonary vascular remodeling and constriction of hypoxic pulmonary hypertension
Authors
Yanxia Wang
Xiaoming Li
Wen Niu
Jian Chen
Bo Zhang
Xiumin Zhang
Yingmei Wang
Shaokang Dang
Zhichao Li
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2021
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-021-01708-w

Other articles of this Issue 1/2021

Respiratory Research 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine